植物生态学报 ›› 2015, Vol. 39 ›› Issue (10): 941-949.DOI: 10.17521/cjpe.2015.0091
• • 下一篇
出版日期:
2015-10-01
发布日期:
2015-10-24
通讯作者:
郭海强
作者简介:
# 共同第一作者
基金资助:
WANG Dan, ZHANG Rong, XIONG Jun, GUO Hai-Qiang*(), ZHAO Bin
Online:
2015-10-01
Published:
2015-10-24
Contact:
Hai-Qiang GUO
About author:
# Co-first authors
摘要:
互花米草(Spartina alterniflora)因良好的促淤能力被引种至我国东海岸, 目前已成为我国滨海湿地分布最为广泛的入侵种。当前的研究大多关注其生产力增加对生态系统固碳能力的直接影响, 却忽视了对其间接作用的定量研究, 如促淤对土壤碳库的贡献。该研究以上海崇明东滩湿地为研究地, 选择具有不同入侵时长(4年、6年、10年)的互花米草斑块, 同时选择芦苇(Phragmites australis)斑块和光滩作为对照, 采集土壤、植物和水体样品。通过测定土壤总碳、总氮、有机碳以及植物和土壤有机质的碳、氮稳定同位素比值(δ13C和δ15N), 分析土壤碳库的变化; 同时, 针对群落结构不同的互花米草斑块分别采用同位素二源混合模型和三源混合模型定量分析土壤有机碳的来源。结果表明: (1)互花米草斑块土壤有机碳含量和δ13C值逐年增加。互花米草入侵能显著增加土壤有机碳库, 并随入侵时间的延长表现出累积效应。土壤碳氮比值随入侵时间的增加而降低, 并趋近于雷德菲尔比率, 表明植物入侵增加土壤碳、氮输入的同时, 海源的潮汐输入也是土壤碳库的重要来源。(2)互花米草对土壤碳库的贡献随入侵时长的增加而增加, 而潮汐输入对土壤碳库的贡献率则不断降低。在入侵时长为4年的斑块中, 潮汐输入的贡献率在90.0%以上; 在入侵10年的斑块中, 潮汐输入的贡献率仅为18.4%, 而互花米草植株的贡献率高达73.5%。这说明互花米草对土壤碳库的贡献在入侵早期以促淤为主, 入侵后期主要依靠自身碳输入。
王丹, 张荣, 熊俊, 郭海强, 赵斌. 互花米草入侵对滨海湿地土壤碳库的贡献——基于稳定同位素的研究. 植物生态学报, 2015, 39(10): 941-949. DOI: 10.17521/cjpe.2015.0091
WANG Dan,ZHANG Rong,XIONG Jun,GUO Hai-Qiang,ZHAO Bin. Contribution of invasive species Spartina alterniflora to soil organic carbon pool in coastal wetland: Stable isotope approach. Chinese Journal of Plant Ecology, 2015, 39(10): 941-949. DOI: 10.17521/cjpe.2015.0091
图1 研究区域和样点分布图。图中MF、PA、SA分别代表光滩、芦苇斑块和互花米草斑块采样点。
Fig. 1 Location of the study area and sampling sites. The MF, PA, SA represent mudflat, Phragmites australis and Spartina alterniflora sampling points, respectively.
植株 Plant | 区域 Area | δ13C (‰) | δ15N (‰) |
---|---|---|---|
互花米草 Spartina alterniflora (C4) | SA-4 | -14.66 | 5.29 |
SA-6 | -14.42 | 3.06 | |
SA-10 | -13.59 | 2.18 | |
芦苇 Phragmites australis (C3) | PA-6 | -26.04 | 4.65 |
PA-10 | -26.24 | 4.74 |
表1 互花米草和芦苇植株碳、氮稳定同位素比值(δ13C、δ15N)
Table 1 The δ13C and δ15N values of Spartina alterniflora and Phragmites australis plants
植株 Plant | 区域 Area | δ13C (‰) | δ15N (‰) |
---|---|---|---|
互花米草 Spartina alterniflora (C4) | SA-4 | -14.66 | 5.29 |
SA-6 | -14.42 | 3.06 | |
SA-10 | -13.59 | 2.18 | |
芦苇 Phragmites australis (C3) | PA-6 | -26.04 | 4.65 |
PA-10 | -26.24 | 4.74 |
图2 互花米草斑块土壤总碳(16 ± 0.6)和有机碳(12 ± 1.3)(mg·g-1 dry soil)的变化(平均值±标准误差)。图中A、B、C、D分别为对照光滩、入侵时长为4年、6年和10年的互花米草斑块。
Fig. 2 Changes in soil total carbon (16 ± 0.6) and organic carbon (12 ± 1.3) (mg·g-1 dry soil) in Spartina alterniflora patches (mean ± SE). The A, B, C and D represent the mudflat, Spartina alterniflora patches of about 4 years, 6 years and 10 years of invasion time, respectively.
图4 互花米草斑块和光滩土壤碳、氮稳定同位素比值(δ13C、δ15N)垂直变化(平均值±标准误差)。MF、SA-4、SA-6和SA-10分别表示光滩、互花米草入侵4年、6年和10年的土壤。
Fig. 4 Vertical changes in the values of δ13C and δ15N of different Spartina alterniflora patches and mudflat soil (mean ± SE). The MF, SA-4, SA-6 and SA-10 represent the mudflat, S. alterniflora patches of about 4 years, 6 years and 10 years of invasion time, respectively. δ13C, stable carbon isotope ratio; δ15N, stable nitrogen isotope ratio.
图5 互花米草斑块中土壤碳库各贡献源比例。其中SA、POC、PA分别代互花米草植株、悬浮颗粒有机碳和芦苇植株对土壤碳库的贡献比例。
Fig. 5 Proportions of soil carbon pools in Spartina alterniflora patches. The SA, POC and PA represent the proportion of S. alterniflora plant, particulate organic carbon and Phragmites australis plant, respectively.
图6 土壤碳库的两个来源及具有一个元素的混合模型示意图。图中三角形为SA-4的样点土壤, POC和SA分别代表潮汐悬浮沉积物和互花米草两个来源。
Fig. 6 Mixing diagram for a mixing model utilizing one isotope value and two sources for the soil organic carbon pool, the triangles represent the soils of SA-4 sampling points, the POC and SA represent sediment and Spartina alterniflora plant sources, respectively.
图7 土壤有机碳库的3个来源及具有两个元素的混合模型示意图。图中圆形和小三角形分别代表SA-6和SA-10采样点土壤, PA、SA和POC分别代表芦苇、互花米草和潮汐沉积物来源。
Fig. 7 Mixing diagram for a mixing model utilizing two isotope values and tree sources for the soil organic carbon pool, the circles and small squares represent the soil of SA-6, SA-10 sampling points. The PA, SA and POC represent Phragmites australis plant, Spartina alterniflora plant, and sediment, respectively.
[1] | Bu NS (2012). Soil CO2, CH4 Emissions and Carbon Dynamic in Wetland of Yangtza Estuary. Doctor dissertation, Fudan University, Shanghai. 25. (in Chinese with English abstract). |
[布乃顺 (2012). 长江河口湿地土壤CO2和CH4排放及碳动态研究. 博士学位论文, 复旦大学, 上海. 25.] | |
[2] | Chen Y, Xi M, Li Y, Kong FL, Kong FT (2013). Applicationgs of stable carbon isotope to the studies of carbon biogeochemical cycle in coastal wetland: A review.Chinese Journal of Ecology, 32, 1613-1619. (in Chinese with English abstract) |
[陈菀, 郗敏, 李悦, 孔范龙, 孔凡亭 (2013). 稳定碳同位素在滨海湿地碳生物地球化学循环中的应用. 生态学杂志, 32, 1613-1619.] | |
[3] | Cheng XL, Chen JQ, Luo YQ, Henderson R, An SQ, Zhang QF, Chen JK, Li B (2008). Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes.Geoderma, 145(3-4), 177-184. |
[4] | Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B (2006). Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island.Soil Biology and Biochemistry, 38, 3380-3386. |
[5] | Cifuentes LA, Coffin RB, Solorzano L, Cardenas W, Espinoza J, Twilley RR (1996). Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary.Estuarine, Coastal and Shelf Science, 43, 781-800. |
[6] | Ehrenfeld JG (2003). Effects of exotic plant invasions on soil nutrient cycling processes.Ecosystems, 6, 503-523. |
[7] | Ehrenfeld JG (2010). Ecosystem consequences of biological invasions.Annual Review of Ecology, Evolution, and Systematics, 41, 59-80. |
[8] | Fei SL, Phillips J, Shouse M (2014). Biogeomorphic impacts of invasive species.Annual Review of Ecology, Evolution, and Systematics, 45, 69-87. |
[9] | Feng ZX, Gao JH, Chen L, Wang YP, Gao JH, Bai FL (2015). The response of organic carbon content to biomass dynamics in Spartina alterniflora marsh.Acta Ecologica Sinica, 35, 2038-2047. (in Chinese with English abstract) |
[冯振兴, 高建华, 陈莲, 汪亚平, 高建慧, 白凤龙 (2015). 互花米草生物量变化对盐沼沉积物有机碳的影响. 生态学报, 35, 2038-2047.] | |
[10] | Gao JH, Wang YP, Pan SM, Zhang R, Li J, Bai FL (2007). Source and distribution of organic matter in seabed sediments of the Changjiang river estuary and its adjacent sea area.Acta Geographica Sinica, 62, 981-991. (in Chinese with English abstract) |
[高建华, 汪亚平, 潘少明, 张瑞, 李军, 白凤龙 (2007). 长江口外海域沉积物中有机物的来源及分布. 地理学报, 62, 981-991.] | |
[11] | Harvey HR, Mannino A (2001). The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers.Organic Geochemistry, 32, 527-542. |
[12] | Hemminga MA, Cattrijsse A, Wielemaker A (1996). Bedload and nearbed detritus transport in a tidal saltmarsh creek. Estuarine,Coastal and Shelf Science, 42, 55-62. |
[13] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[14] | Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011). Stable soil organic matter: A comparison of C:N: P:S ratios in Australian and other world soils.Geoderma, 163, 197-208. |
[15] | Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007). Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China.Ecosystems, 10, 1351-1361. |
[16] | Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis.New Phytologist, 177, 706-714. |
[17] | Liu M, Hou LJ, Xu SY, Ou DN, Jiang HY, Yu J, Wayne SG (2004). Carbon and nitrogen stable isotopes as tracers to source organic matter in the Yangtze estuary.Acta Geographica Sinica, 59, 918-926. (in Chinese with English abstract) |
[刘敏, 侯立军, 许世远, 欧冬妮, 蒋海燕, 余婕, Wayne SG (2004). 长江口潮滩有机质来源的C、N稳定同位素示踪. 地理学报, 59, 918-926.] | |
[18] | Phillips DL (2012). Converting isotope values to diet composition: The use of mixing models.Journal of Mammalogy, 93, 342-352. |
[19] | Shi BW, Yang SL, Luo XX, Xu XJ (2010). A wave attenuation over the transitional zone of mudflat and salt marsh: A case study in the eastern Chongming on the Changjiang delta.Acta Oceanologica Sinica, 32(2), 174-178. (in Chinese with English abstract) |
[史本伟, 杨世伦, 罗向欣, 徐晓君 (2010). 淤泥质光滩-盐沼过渡带波浪衰减的观测研究: 以长江口崇明东滩为例. 海洋学报, 32(2), 174-178.] | |
[20] | Wang G, Yang WB, Wang GX, Liu JE, Hang JQ (2013). The effects of Spartina alterniflora seaward invasion on soil organic carbon fractions, sources and distribution.Acta Ecological Sinica, 33, 2474-2483. (in Chinese with English abstract) |
[王刚, 杨文斌, 王国祥, 刘金娥, 杭子清 (2013). 互花米草海向入侵对土壤有机碳组分、来源和分布的影响. 生态学报, 33, 2474-2483.] | |
[21] | Wolaver TG, Spurrier JD (1988). Carbon transport between a euhaline vegetated marsh in South Carolina and the adjacent tidal creek: Contributions via tidal inundation, runoff and seepage.Marine Ecology-Progress Series, 42, 53-62. |
[22] | Xu HF, Zhao YL (2005). Scientific Survey on Chongming Dongtan Migratory Birds Nature Reserve of Shanghai. China Forestry Publishing House, Beijing. 19-23. (in Chinese with English abstract) |
[徐宏发, 赵云龙 (2005). 上海市崇明东滩鸟类自然保护区科学考察集. 中国林业出版社, 北京. 19-23.] | |
[23] | Yang W, Zhao H, Chen XL, Yin SL, Cheng XL, An SQ (2013). Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China.Ecological Engineering, 61, 50-57. |
[24] | Zhang Y (2010). The Spatial Distribution and Bioenergy Estimation of an Invasive Plant Spartina alterniflora in China. Master degree dissertation, Zhejiang University, Hangzhou. 65. (in Chinese with English abstract). |
[章莹 (2010). 中国沿海滩涂入侵物种互花米草(Spartina alterniflora)的空间分布及生物质能估测研究. 硕士学位论文, 浙江大学, 杭州. 65.] | |
[25] | Zhang YH, Ding WX, Luo JF, Donnison A (2010). Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora.Soil Biology & Biochemistry, 42, 1712-1720. |
[26] | Zhao B, Yan YE, Guo HQ, He MM, Gu YJ, Li B (2009). Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: An application in the Yangtze River Delta area.Ecological Indicators, 9, 346-356. |
[27] | Zuo P, Liu CA, Zhao SH, Wang CH, Liang YB (2009). Distribution of Spartina plantations along the China’s coast.Acta Oceanologica Sinica, 31(5), 101-111. (in Chinese with English abstract) |
[左平, 刘长安, 赵书河, 王春红, 梁玉波 (2009). 米草属植物在中国海岸带的分布现状. 海洋学报, 31(5), 101-111.] |
[1] | 王丽娜, 于永强, 芦东旭, 唐亚坤. 土壤pH调控固氮植物和非固氮植物间的氮转移[J]. 植物生态学报, 2022, 46(1): 1-17. |
[2] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[3] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[4] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[5] | 薛晶月, 王丽华, 谢雨, 高景, 贺俊东, 吴彦. 西南地区草地群落灌木植物盖度对生态系统碳库的影响[J]. 植物生态学报, 2019, 43(4): 365-373. |
[6] | 孙慧敏, 姜姜, 崔莉娜, 张水锋, 张金池. 互花米草入侵对漳江口红树林湿地土壤有机碳官能团特征的影响[J]. 植物生态学报, 2018, 42(7): 774-784. |
[7] | 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662. |
[8] | 庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152. |
[9] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[10] | 陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制[J]. 植物生态学报, 2017, 41(4): 409-417. |
[11] | 吕婷, 赵西宁, 高晓东, 潘燕辉. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185. |
[12] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[13] | 刘帅, 廖嘉星, 肖翠, 范秀华. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7): 711-722. |
[14] | 何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略[J]. 植物生态学报, 2016, 40(2): 151-164. |
[15] | 陈清, 王义东, 郭长城, 王中良. 天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素[J]. 植物生态学报, 2015, 39(11): 1044-1052. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19