植物生态学报 ›› 2016, Vol. 40 ›› Issue (7): 658-668.DOI: 10.17521/cjpe.2015.0155
陈敏玲1,2, 张兵伟1,2, 任婷婷1, 王姗姗1,2, 陈世苹1,*()
收稿日期:
2015-05-03
接受日期:
2015-05-29
出版日期:
2016-07-10
发布日期:
2016-07-07
通讯作者:
陈世苹
基金资助:
Min-Ling CHEN1,2, Bing-Wei ZHANG1,2, Ting-Ting REN1, Shan-Shan WANG1,2, Shi-Ping CHEN1,*()
Received:
2015-05-03
Accepted:
2015-05-29
Online:
2016-07-10
Published:
2016-07-07
Contact:
Shi-Ping CHEN
摘要:
在全球气候变化背景下, 未来我国北方半干旱地区的降水格局将呈现出季节与年际间降水波动增强和极端降水事件增加的趋势。水分是半干旱草原的主要限制因子, 降水格局变化导致的土壤水分状况的改变必然对生态系统的结构和功能产生显著的影响。该研究选取内蒙古多伦和锡林浩特两个典型半干旱草原群落, 通过分析2006-2013年的降水和多层次土壤(0-10 cm, 10 cm, 20 cm, 30 cm和50 cm)含水量连续观测数据, 研究降水格局变化对土壤水分状况及其垂直分布的影响, 特别是土壤水分对降水事件的脉冲响应过程。结果表明: 两个站点的土壤含水量均呈现显著的季节及年际间波动, 其中土壤表层 0-10 cm水分波动更剧烈。锡林浩特50 cm处土壤含水量波动较大, 主要由于春季融雪的影响。年际间多伦和锡林浩特生长季土壤表层0-10 cm土壤含水量与降水量存在显著的正相关关系, 下层(10-50 cm)土壤含水量与降水量相关性不显著。研究发现小至2 mm的降水事件就能够引起两个站点表层0-10 cm土壤含水量的升高, 即该地区有效降水为日降水量> 2 mm。表层0-10 cm土壤含水量对独立降水事件的脉冲响应可通过指数方程很好地拟合。降水事件的大小决定了降水后表层0-10 cm土壤含水量的最大增量和持续时间, 同时这个脉冲响应过程还受到降水前土壤含水量的影响, 但该过程中并未发现植被因子(叶面积指数)的显著影响。降水后水分下渗深度及该深度的土壤含水量增量主要由降水事件的大小主导, 同时受到降水前土壤含水量的影响。在多伦和锡林浩特, 平均每增加1 mm降水, 下渗深度分别增加1.06和0.79 cm。由此作者认为, 在内蒙古半干旱草原, 降水事件大小和降水前土壤干湿状况是影响土壤水分对降水响应的主要因素, 而植被因子的影响较小。
陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹. 内蒙古半干旱草原土壤水分对降水格局变化的响应. 植物生态学报, 2016, 40(7): 658-668. DOI: 10.17521/cjpe.2015.0155
Min-Ling CHEN, Bing-Wei ZHANG, Ting-Ting REN, Shan-Shan WANG, Shi-Ping CHEN. Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(7): 658-668. DOI: 10.17521/cjpe.2015.0155
站点 Site | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 平均年降水量 Mean annual precipitation (mm) | 年平均气温 Mean annual temperature (℃) | 土壤类型 Soil type | 群落高度 Plant community height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 优势植物 Dominant species | 土地利用类型 Land use type |
---|---|---|---|---|---|---|---|---|---|
多伦 Duolun | 42.05° N, 116.28° E | 1 350 | 380 | 2.2 | 栗钙土 Chestnut soils | 42 | 174 | 冷蒿 Artemisia frigida 克氏针茅 Stipa krylovii | 2001年围封 Fenced from 2001 |
锡林浩特Xilinhot | 43.55° N, 116.67 E | 1 250 | 332 | 0.84 | 栗钙土 Chestnut soils | 48 | 185 | 羊草 Leymus chinensis 大针茅 Stipa grandis | 2005年围封并打草 Fenced and clipped from 2005 |
表1 多伦和锡林浩特两个研究站点的基本信息
Table 1 General information of Duolun and Xilinhot sites
站点 Site | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 平均年降水量 Mean annual precipitation (mm) | 年平均气温 Mean annual temperature (℃) | 土壤类型 Soil type | 群落高度 Plant community height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 优势植物 Dominant species | 土地利用类型 Land use type |
---|---|---|---|---|---|---|---|---|---|
多伦 Duolun | 42.05° N, 116.28° E | 1 350 | 380 | 2.2 | 栗钙土 Chestnut soils | 42 | 174 | 冷蒿 Artemisia frigida 克氏针茅 Stipa krylovii | 2001年围封 Fenced from 2001 |
锡林浩特Xilinhot | 43.55° N, 116.67 E | 1 250 | 332 | 0.84 | 栗钙土 Chestnut soils | 48 | 185 | 羊草 Leymus chinensis 大针茅 Stipa grandis | 2005年围封并打草 Fenced and clipped from 2005 |
图1 表层0-10 cm土壤含水量(VWC0-10, y)对降水事件的脉冲响应模式图(参考Liu et al., 2002)。a和b, 方程的参数; PPT, 降水事件, 箭头指示降水事件发生的时间; Tlasting, 脉冲响应的持续时间(降水后VWC0-10高于VWCPre的时间); ΔVWC0-10, 降水后VWC0-10的最大增量; VWCMax, 降水后VWC0-10能够达到的最大值; VWCPre (y0), 降水前一天的VWC0-10。
Fig. 1 Conceptual model of the pulse response of surface soil water content (VWC0-10, y) to precipitation events (refer to Liu et al., 2002). a and b, parameters of the equation; PPT, precipitation event, the arrow indicates the time when PPT occurred; Tlasting, the lasting time of pulse response (the periods of VWC0-10 above VWCPre after the PPT); ΔVWC0-10, maximum increment of VWC0-10 after the PPT; VWCMax, maximum VWC0-10 after the PPT; VWCPre (y0), VWC0-10 of the day before the PPT.
图2 多伦(DL)和锡林浩特(XL)两个站点8年(2006-2013年)环境因子和植被因子月均值的动态变化(平均值±标准误差, n = 8)。A, 多伦平均月降水(柱形图)和气温(折线图)的季节变化。B, 锡林浩特平均月降水(柱形图)和气温(折线图)的季节变化。C, 多伦(DL)和锡林浩特(XL)月平均叶面积指数(LAI)的季节变化。
Fig. 2 Monthly means of environmental and vegetation factors across eight years (2006-2013) at Duolun (DL) and Xilinhot (XL) sites (mean ± SE, n = 8). A, Seasonal variations of mean monthly precipitation (bar) and air temperature (line) of Duolun. B, Seasonal variations of mean monthly precipitation (bar) and air temperature (line) of Xilinhot. C, Seasonal variations of mean monthly leaf area index (LAI) at Duolun (DL) and Xilinhot (XL).
图3 多伦(A)和锡林浩特(B)两个站点生长季不同土层平均土壤含水量(点线图)和降水量(柱形图)的年际变化(2006- 2013年)。
Fig. 3 Inter-annual variations of precipitation (bar) and soil water content (VWC) during the growing season at different soil depths (scatters and lines) at the two sites (A, Duolun; B, Xilinhot) from 2006 to 2013.
图4 多伦(A)和锡林浩特(B)两个站点降水量与生长季平均表层土壤含水量(VWC0-10)的关系。GSP, 生长季降水量; AP, 年降水量。*, p < 0.05。
Fig. 4 Relationships between surface soil water content (VWC0-10) and precipitation during the growing season at the two sites (A, Duolun; B, Xilinhot). GSP, the growing season precipitation; AP, annual precipitation. *, p < 0.05.
图5 多伦(A)和锡林浩特(B)两个站点不同土层日均土壤含水量(VWC)与反照率的动态变化(2006-2013年)。
Fig. 5 Seasonal dynamics of mean daily mean soil water content (VWC) at different soil depths and albedo at the two sites (A, Duolun; B, Xilinhot) from 2006 to 2013.
因变量 Variable | 站点 Site | 进入变量 Entered variable | 移除变量 Removed variable | 参数估计 Parameter estimate | 偏R2 Partial R2 | 模型R2 Model R2 | p |
---|---|---|---|---|---|---|---|
ΔVWC0-10 | 多伦 Duolun | 方程截距 Intercept | 2.32 | ||||
PPT | 0.38 | 0.73 | 0.73 | <0.001 | |||
VWCPre | -0.19 | 0.06 | 0.79 | <0.001 | |||
STPre | -0.08 | 0.00 | 0.79 | 0.282 | |||
LAI | 1.30 | 0.00 | 0.79 | 0.340 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 0.92 | |||||
PPT | 0.35 | 0.52 | 0.85 | <0.001 | |||
VWCPre | -0.08 | 0.08 | 0.01 | 0.084 | |||
STPre | 0.01 | 0.00 | 0.86 | 0.820 | |||
LAI | 0.58 | 0.00 | 0.86 | 0.356 | |||
Tlasting | 多伦 Duolun | 方程截距 Intercept | 11.63 | ||||
PPT | 0.33 | 0.33 | 0.33 | <0.001 | |||
VWCPre | -0.42 | 0.22 | 0.55 | <0.001 | |||
STPre | -0.17 | 0.05 | 0.60 | 0.011 | |||
LAI | 0.74 | 0.00 | 0.60 | 0.680 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 6.53 | |||||
PPT | 0.31 | 0.52 | 0.52 | <0.001 | |||
VWCPre | -0.27 | 0.08 | 0.60 | 0.003 | |||
STPre | -0.00 | 0.00 | 0.60 | 0.997 | |||
LAI | 0.95 | 0.00 | 0.60 | 0.502 |
表2 降水后表层土壤含水量最大增量(ΔVWC0-10)和持续时间(Tlasting)的多元逐步回归分析结果
Table 2 Results of the multiple stepwise regressions on increment of surface soil water content (ΔVWC0-10) and lasting time (Tlasting) after the precipitation event at the two sites
因变量 Variable | 站点 Site | 进入变量 Entered variable | 移除变量 Removed variable | 参数估计 Parameter estimate | 偏R2 Partial R2 | 模型R2 Model R2 | p |
---|---|---|---|---|---|---|---|
ΔVWC0-10 | 多伦 Duolun | 方程截距 Intercept | 2.32 | ||||
PPT | 0.38 | 0.73 | 0.73 | <0.001 | |||
VWCPre | -0.19 | 0.06 | 0.79 | <0.001 | |||
STPre | -0.08 | 0.00 | 0.79 | 0.282 | |||
LAI | 1.30 | 0.00 | 0.79 | 0.340 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 0.92 | |||||
PPT | 0.35 | 0.52 | 0.85 | <0.001 | |||
VWCPre | -0.08 | 0.08 | 0.01 | 0.084 | |||
STPre | 0.01 | 0.00 | 0.86 | 0.820 | |||
LAI | 0.58 | 0.00 | 0.86 | 0.356 | |||
Tlasting | 多伦 Duolun | 方程截距 Intercept | 11.63 | ||||
PPT | 0.33 | 0.33 | 0.33 | <0.001 | |||
VWCPre | -0.42 | 0.22 | 0.55 | <0.001 | |||
STPre | -0.17 | 0.05 | 0.60 | 0.011 | |||
LAI | 0.74 | 0.00 | 0.60 | 0.680 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 6.53 | |||||
PPT | 0.31 | 0.52 | 0.52 | <0.001 | |||
VWCPre | -0.27 | 0.08 | 0.60 | 0.003 | |||
STPre | -0.00 | 0.00 | 0.60 | 0.997 | |||
LAI | 0.95 | 0.00 | 0.60 | 0.502 |
图6 多伦(DL)和锡林浩特(XL)两站点降水脉冲响应过程的表层0-10 cm土壤含水量最大增量(ΔVWC0-10), 持续时间(Tlasting)和降水事件大小(PPT), 降水前土壤含水量(VWCPre)之间的关系。A, ΔVWC0-10和PPT的关系。B, Tlasting和PPT的关系。C, ΔVWC0-10和VWCPre的关系。D, Tlasting和VWCPre的关系。E, 单位降水引起的表层土壤水分增量(ΔVWC0-10 /PPT)和VWCPre的关系。***, p < 0.001; *, p < 0.050; #, p < 0.100。
Fig. 6 Relationships of the maximum increment of surface 0-10 cm soil water content (ΔVWC0-10) and lasting time (Tlasting) in the pulse response process to precipitation with precipitation event size (PPT) and soil moisture content before precipitation events (VWCPre) at the two sites (DL, Duolun; XL, Xilinhot). A, Relationship between ΔVWC0-10 and PPT. B, Relationship between Tlasting and PPT. C, Relationship between ΔVWC0-10 and VWCPre. D, Relationship between Tlasting and VWCPre. E, Relationship between the maximum increment of ΔVWC0-10 induced by 1 mm precipitation and VWCPre. ***, p < 0.001; *, p < 0.050; #, p < 0.100.
图7 多伦(DL)和锡林浩特(XL)两站点降水后土壤水分下渗深度(Depth)与降水事件大小(PPT)及降水前土壤含水量(VWCPre)的关系。A, Depth与PPT的关系。B, 单位降水入渗深度(Depth/PPT)与VWCPre的关系。***, p < 0.001; **, p < 0.010。
Fig. 7 Relationships between infiltration depth (Depth) with precipitation event size (PPT) and soil water content before the events (VWCPre) at the two sites (DL, Duolun; XL, Xilinhot). A, Relationship between Depth and PPT. B, Relationship between infiltration depth of 1 mm precipitation (Depth/PPT) and VWCPre. ***, p < 0.001; **, p < 0.010.
土层 Soil layer (cm) | 多伦 Duolun | 锡林浩特 Xilinhot | |||||||
---|---|---|---|---|---|---|---|---|---|
方程 Equation | 样本量 No. of samples | R2 | p | 方程 Equation | 样本量 No. of samples | R2 | p | ||
10 | y = 0.31x - 0.37 | 40 | 0.54 | <0.000 1 | y = 0.39x - 0.91 | 40 | 0.72 | <0.000 1 | |
20 | y = 0.20x + 0.44 | 14 | 0.34 | 0.029 8 | y = 0.34x - 3.45 | 17 | 0.67 | <0.000 1 | |
30 | y = 0.38x - 7.56 | 7 | 0.77 | 0.009 4 | y = 0.27x - 4.12 | 5 | 0.77 | 0.051 3 |
表3 不同土层降水后土壤水分增量(y, %)与降水事件大小(x, mm)的线性回归分析结果(包括回归方程, R2和p值)
Table 3 Results of linear regression (including equation, R2 and p value) between precipitation event size (x, mm) and the increment of soil water content (y, %) at different soil depth
土层 Soil layer (cm) | 多伦 Duolun | 锡林浩特 Xilinhot | |||||||
---|---|---|---|---|---|---|---|---|---|
方程 Equation | 样本量 No. of samples | R2 | p | 方程 Equation | 样本量 No. of samples | R2 | p | ||
10 | y = 0.31x - 0.37 | 40 | 0.54 | <0.000 1 | y = 0.39x - 0.91 | 40 | 0.72 | <0.000 1 | |
20 | y = 0.20x + 0.44 | 14 | 0.34 | 0.029 8 | y = 0.34x - 3.45 | 17 | 0.67 | <0.000 1 | |
30 | y = 0.38x - 7.56 | 7 | 0.77 | 0.009 4 | y = 0.27x - 4.12 | 5 | 0.77 | 0.051 3 |
图8 多伦(DL)和锡林浩特(XL)两站点土壤容重垂直分布(0-100 cm)。 *表示两个站点之间存在显著差异(p < 0.050, n = 5)。
Fig. 8 Vertical distributions of soil bulk density (0-100 cm) at the two sites (DL, Duolun; XL, Xilinhot). * indicates significant difference between the two sites at p < 0.050 (n = 5).
1 | Adams JM, Faure H, Fauredenard L, Mcglade JM, Woodward FI (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present.Nature, 348, 711-714. |
2 | Blair JM (1997). Fire, N availability, and plant response in grasslands: A test of the transient maxima hypothesis.Ecology, 78, 2359-2368. |
3 | Burba GG, Verma SB (2005). Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems.Agricultural and Forest Meteorology, 135, 190-201. |
4 | Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biology, 15, 2450-2461. |
5 | Chen ZZ, Wang SP (2000). Typical Steppe Ecosystems of China. Science Press, Beijing. (in Chinese)[陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] |
6 | Coupland RT (1950). Ecology of mixed prairie in Canada.Ecological Monograph, 20, 271-315. |
7 | Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074. |
8 | Falster DS, Warton DI, Wright IJ (. Cited: 11 Mar. 2006. |
9 | Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function.Biogeosciences, 8, 3053-3068. |
10 | Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland Eirik, Zhai PM (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change.Climatic Change, 42, 243-283. |
11 | Hao YB (2006). Characteristics of Net Ecosystem Exchange of Carbon Dioxide and Their Driving Factors over a Fenced Leymus chinensis Steppe in Inner Mongolia. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 115-117. (in Chinese with English abstract)[郝彦宾 (2006). 内蒙古羊草草原碳通量观测及其驱动机制分析. 博士学位论文, 中国科学院植物研究所, 北京. 115-117.] |
12 | Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem.Global Change Biology, 11, 322-334. |
13 | Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009). Contingent productivity responses to more extreme rainfall regimes across a grassland biome.Global Change Biology, 15, 2894-2904. |
14 | Heisler-White JL, Knapp AK, Kelly EF (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland.Oecologia, 158, 129-140. |
15 | Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia, 141, 254-268. |
16 | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
17 | Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reich- stein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience, 58, 811-821. |
18 | Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland.Science, 298, 2202-2205. |
19 | Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production.Science, 291, 481-484. |
20 | Liu XZ, Wan SQ, Su B, Hui DF, Luo YQ (2002). Response of soil CO2 ef?ux to water manipulation in a tallgrass prairie ecosystem.Plant and Soil, 240, 213-223. |
21 | Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA.Oecologia, 141, 269-281. |
22 | Miao HX (2008). Effects of Cultivation and Grazing on Evapotranspiration of Steppe Ecosystems in Inner Mongolia, China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 62-74. (in Chinese with English abstract)[苗海霞 (2008). 开垦和放牧对内蒙古半干旱草原蒸发散的影响. 博士学位论文, 中国科学院植物研究所, 北京. 62-74.] |
23 | Miller PC, Poole DK, Miller PM (1983). The Influence of annual precipitation, topography, and vegetative cover on soil moisture and summer drought in Southern California.Oecologia, 56, 385-391. |
24 | Ni J, Zhang XS (2000). Climate variability, ecological gradient and the Northeast China Transect (NECT).Journal of Arid Environments, 46, 313-325. |
25 | Oki T, Kanae S (2006). Global hydrological cycles and world water resources.Science, 313, 1068-1072. |
26 | Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006). Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland.New Phytologist, 170, 849-860. |
27 | Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004). Water conservation in Artemisia tridentata through redistribution of precipitation.Oecologia, 141, 335-345. |
28 | Sala OE, Lauenroth WK (1982). Small rainfall events: An eco- logical role in semiarid regions.Oecologia, 53, 301-304. |
29 | Schenk HJ, Jackson RB (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics.Geoderma, 126, 129-140. |
30 | Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.Oecologia, 141, 211-220. |
31 | Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17, 1505-1515. |
32 | Weltzin JF, Tissue DT (2003). Resource pulses in arid environments-patterns of rain, patterns of life.New Phytologist, 157, 171-173. |
33 | Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014). Future changes to the intensity and frequency of short- duration extreme rainfall.Reviews of Geophysics, 52, 522-555. |
34 | Wilcox KR, von Fischer JC, Muscha JM, Petersen MK, Knapp AK (2015). Contrasting above- and belowground sensitivity of three great plains grasslands to altered rainfall regimes.Global Change Biology, 21, 335-344. |
35 | Williams CA, Hanan N, Scholes RJ, Kutsch W (2009). Com- plexity in water and carbon dioxide fluxes following rain pulses in an African savanna.Oecologia, 161, 469-480. |
36 | Yahdjian L, Sala OE (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe.Ecology, 87, 952-962. |
37 | Yaseef NR, Yakir D, Rotenberg E, Schiller G, Cohen S (2010). Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes.Ecohydrology, 3, 143-154. |
[1] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[3] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[4] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[5] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[6] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[7] | 李晋波, 姚楠, 赵英, 范庭, 张建国, 兰志龙, 易军, 司炳成. 不同放牧条件下锡林郭勒典型草原土壤水分分布特征及降水入渗估算[J]. 植物生态学报, 2018, 42(10): 1033-1042. |
[8] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[9] | 严月, 朱建军, 张彬, 张艳杰, 鲁顺保, 潘庆民. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报, 2017, 41(5): 585-596. |
[10] | 管超, 张鹏, 李新荣. 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J]. 植物生态学报, 2017, 41(3): 301-310. |
[11] | 孙鹏森, 刘宁, 刘世荣, 孙阁. 川西亚高山流域水碳平衡研究[J]. 植物生态学报, 2016, 40(10): 1037-1048. |
[12] | 张彬,朱建军,刘华民,潘庆民. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018. |
[13] | 熊育久,邱国玉,谢芳. 内蒙古太仆寺旗退耕草地植物种类变化与水分收支[J]. 植物生态学报, 2014, 38(5): 425-439. |
[14] | 夏江宝, 张淑勇, 赵自国, 赵艳云, 高源, 谷广义, 孙景宽. 贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级[J]. 植物生态学报, 2013, 37(9): 851-860. |
[15] | 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19