植物生态学报 ›› 2016, Vol. 40 ›› Issue (5): 493-501.DOI: 10.17521/cjpe.2015.0174
陈修文, 于丹, 刘春花*
出版日期:
2016-05-10
发布日期:
2016-05-25
通讯作者:
刘春花
基金资助:
Xiu-Wen CHEN, Dan YU, Chun-Hua LIU*
Online:
2016-05-10
Published:
2016-05-25
Contact:
Chun-Hua LIU
摘要:
水位波动对水生植物的生长有显著影响。该文通过设置0次(对照)、1次、2次和4次水位波动频率, 研究了入侵种喜旱莲子草(Alternanthera philoxeroides)、外来种粉绿狐尾藻(又称聚叶狐尾藻, Myriophyllum aquaticum)和乡土种水龙(Ludwigia adscendens = Jussiaea reppens)对水位波动的形态和生理响应策略。结果显示: 水位波动对喜旱莲子草的分枝数、根冠比和最大光化学量子产量(Fv/Fm)无明显影响, 但明显增加了株高(水位波动1次除外), 降低了生物量和叶绿素含量; 粉绿狐尾藻的分枝数和Fv/Fm在不同水位波动下无明显变化, 但株高在2次水位波动下明显增加, 根冠比在1次和4次水位波动下明显增加, 生物量和叶绿素含量(4次水位波动除外)在水位波动后明显降低; 水位波动明显降低了水龙的分枝数(2次水位波动除外)、株高(1次和2次水位波动除外)、总生物量(2次水位波动除外)和叶绿素含量, 但对水龙的根冠比和Fv/Fm无明显影响。水龙的分枝数、株高、总生物量、叶绿素含量和Fv/Fm在绝大部分水位波动处理下都明显大于喜旱莲子草和粉绿狐尾藻, 而且后二者间没有显著区别。以上结果说明在秋季这3个物种的生长都受到水位波动的抑制, 喜旱莲子草和粉绿狐尾藻在秋季水位波动生境中并不能表现出较强的生长能力, 但对水位波动具有较强的耐受性和可塑性, 这与入侵种较强的入侵性有关。应加强防范外来种粉绿狐尾藻的入侵。
陈修文, 于丹, 刘春花. 秋季水位波动频率对喜旱莲子草、粉绿狐尾藻和水龙的影响. 植物生态学报, 2016, 40(5): 493-501. DOI: 10.17521/cjpe.2015.0174
Xiu-Wen CHEN, Dan YU, Chun-Hua LIU. Effect of water level fluctuation frequency on Alternanthera philoxeroides, Myriophyllum aquaticum and Ludwigia adscendens in autumn. Chinese Journal of Plant Ecology, 2016, 40(5): 493-501. DOI: 10.17521/cjpe.2015.0174
温度 Temperature (℃) | 溶解氧 Dissolved oxygen (mg·L-1) | 电导率 Conductivity (ms·m-1) | 溶解性固体总量 Total dissolved solids (mg·L-1) | 盐度 Salinity (%) | pH值 pH value | 水面光照 Light intensity on water surface (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
29.36 ± 2.86 | 5.06 ± 1.18 | 192.26 ± 16.52 | 115.32 ± 7.86 | 0.008 0 ± 0.000 6 | 8.79 ± 0.14 | 851.54 ± 322.38 |
表1 实验期间水体物理化学指标(平均值±标准误差)
Table 1 The physical and chemical index of the water during the experiment (means ± SE)
温度 Temperature (℃) | 溶解氧 Dissolved oxygen (mg·L-1) | 电导率 Conductivity (ms·m-1) | 溶解性固体总量 Total dissolved solids (mg·L-1) | 盐度 Salinity (%) | pH值 pH value | 水面光照 Light intensity on water surface (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
29.36 ± 2.86 | 5.06 ± 1.18 | 192.26 ± 16.52 | 115.32 ± 7.86 | 0.008 0 ± 0.000 6 | 8.79 ± 0.14 | 851.54 ± 322.38 |
方差来源 Source of variation | 处理 Treatment | 物种 Species | 处理×物种 Treatment × species |
---|---|---|---|
分枝数 Branching number | 46.496*** | 57.285*** | 110.719*** |
株高 Shoot length | 11.593** | 116.742*** | 136.719*** |
总生物量 Total biomass | 35.962*** | 74.402*** | 122.205*** |
根冠比 Root shoot ratio | 0.946ns | 0.932ns | 8.460*** |
叶绿素含量 Chlorophyll content | 19.405*** | 16.379*** | 45.39*** |
最大光化学量子产量 Maximum PSII quantum efficiency | 6.934ns | 93.935*** | 106.524*** |
表2 水位波动和物种对形态特征和生理特征影响的方差分析
Table 2 F and p values for two-way ANOVA of water level and species analysis for morphological and physiological traits
方差来源 Source of variation | 处理 Treatment | 物种 Species | 处理×物种 Treatment × species |
---|---|---|---|
分枝数 Branching number | 46.496*** | 57.285*** | 110.719*** |
株高 Shoot length | 11.593** | 116.742*** | 136.719*** |
总生物量 Total biomass | 35.962*** | 74.402*** | 122.205*** |
根冠比 Root shoot ratio | 0.946ns | 0.932ns | 8.460*** |
叶绿素含量 Chlorophyll content | 19.405*** | 16.379*** | 45.39*** |
最大光化学量子产量 Maximum PSII quantum efficiency | 6.934ns | 93.935*** | 106.524*** |
图2 喜旱莲子草、粉绿狐尾藻和水龙的分枝数(A)、株高(B)、总生物量(C)、根冠比(D)、叶绿素含量(E)和最大光化学量子产量(F)在不同水位波动频率下的变化(平均值±标准误差, n = 20)。相同的字母表示处理间无显著差异(p > 0.05); 不同的字母表示处理间差异显著(p < 0.05)。
Fig. 2 Branching number (A), shoot length (B), total biomass (C), root shoot ratio (D), content of chlorophyll (E) and maximum PSII quantum efficiency (F) of Alternanthern philoxeroides, Myriophyllum aquaticum and Ludwigia adscendens subjected to the different frequency of water-level fluctuation (mean ± SE, n = 20). Bars sharing the same letters indicate no significant differences among treatments (p > 0.05) and the different letters indicate significant differences among treatments (p < 0.05).
1 |
Bailey-Serres J, Voesenek LACJ (2008). Flooding stress: Acclimations and genetic diversity.Annual Review of Plant Biology, 59, 313-339.
DOI URL PMID |
2 |
Barrat-Segretain MH (2001). Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat.Freshwater Biology, 46, 935-945.
DOI URL |
3 | Bj?rkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504. |
4 | Chen HJ, Qualls RG, Blank RR (2005). Effects of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exoticLepidium latifolium. Aquatic Botany, 82, 250-268. |
5 |
Crawford RMM, Br?ndle R (1996). Oxygen deprivation stress in a changing environment.Journal of Experimental Botany, 47, 145-159.
DOI URL |
6 |
Fan SF, Yu HH, Liu CH, Yu D, Han YQ, Wang LG (2015). The effects of complete submergence on the morphological and biomass allocation response of the invasive plantAlternanthera philoxeroides. Hydrobiologia, 746, 159-169.
DOI URL |
7 | Fang JY (2000). Global Ecology: Climate Change and Ecological Response. Higher Education Press, Beijing. (in Chinese)[方精云 (2000). 全球生态学: 气候变化与生态响应. 高等教育出版社, 北京.] |
8 | Gasith A, Gafny S (1990). Effects of water level fluctuation on the structure and function of the littoral zone. In: Tilzer MM, Serruya C eds. Large Lakes: Ecological Structure and Function. Springer-Verlag, Berlin. 156-171. |
9 | Guo SL, Li YH (1998). Study on weed ecological relationships in autumn-harvested dry crop fields in Jinhua, Zhejiang Province. Journal of Wuhan Botanical Research, 16(1), 39-46. (in Chinese with English abstract)[郭水良, 李扬汉 (1998). 金华地区秋旱作物田杂草生态相似关系研究. 武汉植物学研究, 16, 39-46.] |
10 | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X (2001). Climate Change 2001: The Scientific Basis Cambridge University Press, Cambridge The Scientific Basis. Cambridge University Press, Cambridge, UK. 1-881. |
11 |
Hussner A, Meyer C, Busch J (2009). The influence of water level and nutrient availability on growth and root system development ofMyriophyllum aquaticum. Weed Research, 49, 73-80.
DOI URL |
12 |
Jing BH, Yuan LY (2015). Photosynthetic fluorescence characteristics of five dominant submerged macrophytes in Honghu Lake.Acta Botanica Boreali-Occidentalia Sinica, 35, 344-349. (in Chinese with English abstract)[经博翰, 袁龙义 (2015). 洪湖5种优势沉水植物光合荧光特性比较研究. 西北植物学报, 35, 344-349.]
DOI URL |
13 | Li M, Zhang LJ, Tao L, Li W (2008). Ecophysiological responses of Jussiaea repens to cadmium exposure.Aquatic Botany, 88, 347-352. |
14 | Li ZY, Hsieh CF (1996). New materials of the genus Myriophyllum L. (Haloragaceae) in Taiwan.Taiwania, 41, 322-328. |
15 | Lichtenthaler HK (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes.Methods in Enzymology, 148, 350-382. |
16 | Luo FL, Wang L, Zeng B, Ye XQ, Chen T, Liu D, Zhang YH (2006). Photosynthetic responses of the riparian plant Arundinella anomala Steud. in Three Gorges reservoir region as affected by simulated flooding.Acta Ecologica Sinica, 26, 3602-3609. (in Chinese with English abstract)[罗芳丽, 王玲, 曾波, 叶小齐, 陈婷, 刘巅, 张艳红 (2006). 三峡库区岸生植物野古草(Arundinella anomala Steud.)光合作用对水淹的响应. 生态学报, 26, 3602-3609.] |
17 |
Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JG, Evans HE, Fee EJ, Hall RI, Mortsch LR (1997). Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region.Hydrological Processes, 11, 825-871.
DOI URL |
18 | Maucham A, Blanch S, Grillas P (2001). Effects of submergence on the growth of Phragmites australis seedlings.Aquatic Botany, 69, 147-164. |
19 |
McConnaughay KDM, Coleman JS (1999). Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients.Ecology, 80, 2581-2593.
DOI URL |
20 |
McDowell SCL (2002). Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany, 89, 1431-1438.
DOI URL PMID |
21 | Mommer L, Visser EJW (2005). Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity.Annals of Botany, 96, 581-589. |
22 | Pan XY, Geng YP, Zhang WJ, Li B, Chen JK (2006). Cover shift and morphological plasticity of invasive Alternanthera philoxeroides along a riparian zone in South China. Journal of Plant Ecology (Chinese Version), 30, 835-843. (in Chinese with English abstract)[潘晓云, 耿宇鹏, 张文驹, 李博, 陈家宽 (2006). 喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性. 植物生态学报, 30, 835-843.] |
23 |
Schreiber U, Bilger W, Neubauer C (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of Photosynthesis, 100, 49-70.
DOI URL |
24 |
Sobrino E, Sanz Elorza M, Dana ED (2002). Invasibility of a coastal strip in NE Spain by alien plants.Journal of Vegetation Science, 13, 585-594.
DOI URL |
25 |
Song YZ, Huang J, Qin BQ (2010). Effects of epiphyte on the rapid light curves of two submerged macrophytes in Lake Taihu.Journal of Lake Sciences, 22, 935-940. (in Chinese with English abstract)[宋玉芝, 黄瑾, 秦伯强 (2010). 附着生物对太湖常见的两种沉水植物快速光曲线的影响. 湖泊科学, 22, 935-940.]
DOI URL |
26 | Strand JA, Weisner SEB (2001). Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum).Journal of Ecology, 89, 166-175. |
27 | Sutton DL, Bingham SW (1973). Anatomy of emersed parrotfeather.Hyacinth Control Journal, 11, 49-54. |
28 |
Vartapetian BB, Jackson MB (1997). Plant adaptations to anaerobic stress.Annals of Botany, 79, 3-20.
DOI URL |
29 | Wang SM, Dou HS (1998). Lakes in China. Science Press, Beijing. (in Chinese)[王苏民, 窦鸿身 (1998). 中国湖泊志. 科学出版社, 北京.] |
30 | Wang WG, Su XH, Tang XY, Hou YQ, Hu QC (2013). Environmental risk assessment and management of exotic wetland plants used for treatment of rural domestic sewage.Journal of Ecology and Rural Environment, 29, 191-196. (in Chinese with English abstract)[王文国, 苏小红, 汤晓玉, 侯远青, 胡启春 (2013). 用于农村生活污水处理的常见外来湿地植物的环境风险评估与管理. 生态与农村环境学报, 29, 191-196.] |
31 | Wang XH, Ji MS (2013). Photosynthetic characteristics of an invasive plant Conyza canadensis and its associated plants.Chinese Journal of Applied Ecology, 24, 71-77. (in Chinese with English abstract)[王晓红, 纪明山 (2013). 入侵植物小飞蓬及其伴生植物的光合特性. 应用生态学报, 24, 71-77.] |
32 | Wei H, Cheng SP, Wu ZB (2010). Effects of hydrological characteristics on aquatic plants. Modern Agricultural Sciences and Technology, 7, 13-16. (in Chinese with English abstract)[魏华, 成水平, 吴振斌 (2010). 水文特征对水生植物的影响. 现代农业科技, 7, 13-16.] |
33 |
Wright SD, McConnaughay KDM (2002). Interpreting phenotypic plasticity: The importance of ontogeny.Plant Species Biology, 17(2-3), 119-131.
DOI URL |
34 | Wu C, Chang XX, Dong HJ, Li DF, Liu JY (2008). Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. on Microcystis aeruginosa and its physiological mechanism. Acta Ecologica Sinica, 28, 2595-2603. (in Chinese with English abstract)[吴程, 常学秀, 董红娟, 李地福, 刘军燕 (2008). 粉绿狐尾藻((Myriophyllum aquaticum)对铜绿微囊藻(Microcystis aeruginosa)的化感抑制效应及其生理机制. 生态学报, 28, 2595-2603.] |
35 | Yang YQ (2003). Effects of water level fluctuation on the growth of aquatic plants (an experimental ecological study). Master degree dissertation, Wuhan University, Wuhan. (in Chinese with English abstract)[杨永清 (2003). 水位波动对水生植物生长影响的实验生态学研究. 硕士学位论文, 武汉大学, 武汉.] |
36 |
You WH, Fan SF, Yu D, Xie D, Liu CH (2014). An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments.PLoS ONE, 9, e97246.
DOI URL PMID |
37 |
Yu LF, Yu D (2009). Responses of the threatened aquatic plant Ottelia alismoides to water level fluctuations. Fundamental and Applied Limnology, 174, 295-300.
DOI URL |
38 |
Yu LF, Yu D (2011). Differential responses of the floating- leaved aquatic plant Nymphoides peltata to gradual versus rapid increases in water levels.Aquatic Botany, 94, 71-76.
DOI URL |
39 | Yuan L, Zhang LQ, Gu ZQ (2010). Responses of chlorophyll fluorescence of an invasive plant Spartina alterniflora to continuous waterlogging.Acta Scientiae Circumstantiae, 30, 882-889. (in Chinese with English abstract)[袁琳, 张利权, 古志钦 (2010). 入侵植物互花米草(Spartina alterniflora)叶绿素荧光对淹水胁迫的响应. 环境科学学报, 30, 882-889.] |
40 | Zheng L, Feng YL (2005). The effects of ecophysiological traits on carbon gain in invasive plants.Acta Ecologica Sinica, 25, 1430-1437. (in Chinese with English abstract)[郑丽, 冯玉龙 (2005). 入侵植物的生理生态特性对碳积累的影响. 生态学报, 25, 1430-1437.] |
41 |
Zohary T, Ostrovsky I (2011). Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters, 1, 47-59.
DOI URL |
[1] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[2] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[6] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[9] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[10] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[11] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[12] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[13] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[14] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[15] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19