植物生态学报 ›› 2018, Vol. 42 ›› Issue (12): 1200-1210.DOI: 10.17521/cjpe.2018.0120
收稿日期:
2018-02-21
修回日期:
2018-10-31
出版日期:
2018-12-20
发布日期:
2019-04-04
通讯作者:
张彩虹
基金资助:
LU Ying,LI Kun,NI Rui-Qiang,LIANG Qiang,LI Chuan-Rong,ZHANG Cai-Hong()
Received:
2018-02-21
Revised:
2018-10-31
Online:
2018-12-20
Published:
2019-04-04
Contact:
Cai-Hong ZHANG
Supported by:
摘要:
为了理解细菌群落结构和多样性对森林生态系统细根凋落物分解的影响, 该研究以泰山4种主要优势造林树种刺槐(Robinia pseudoacacia)、麻栎(Quercus acutissima)、油松(Pinus tabulaeformis)和赤松(Pinus densiflora)为研究对象, 采用凋落物分解袋法及Illumina Miseq测序平台对细菌16S rDNA V4-V5区扩增产物进行双端测序, 分析了4种树种细根分解对细菌群落结构及多样性的影响。结果表明: (1) 4种植物细根分解速率差异显著, 阔叶树种分解速率显著高于针叶树种, 表现为刺槐>麻栎>油松>赤松。(2) 4个树种细菌序列操作分类单元(OTU)、观测到的物种数、Ace指数和系统发育多样性之间差异显著, 且阔叶树种刺槐和麻栎显著低于针叶树种赤松和油松。4种细根分解的细菌群落结构存在极显著差异。细根初始碳(C)含量、木质素:氮(N)和C:N对细菌群落结构的影响较大。(3)细菌群落相对丰度在5%以上的优势类群是变形菌门、放线菌门、拟杆菌门、酸杆菌门, 且变形菌门、酸杆菌门在4个树种之间差异显著, 特别是阔叶树种变形菌门显著高于针叶树种。在纲水平上, α-变形菌纲、β-变形菌纲、γ-变形菌纲、不明放线菌纲、鞘脂杆菌纲为主要的优势纲, 其中α-变形菌纲、不明放线菌纲在4个树种之间差异显著。(4) Pearson相关性分析表明, 细菌优势门和纲相对丰度受到凋落物初始化学性质的影响, 特别是变形菌门和α-变形菌纲; 变形菌门和α-变形菌纲相对丰度与细根分解速率显著正相关。冗余分析结果也显示, 细根初始N、磷(P)含量和木质素含量对细菌群落结构的影响较大。研究结果有助于理解细菌群落结构和多样性对森林生态系统细根凋落物分解的影响。
路颖, 李坤, 倪瑞强, 梁强, 李传荣, 张彩虹. 泰山4种优势造林树种细根分解对细菌群落结构的影响. 植物生态学报, 2018, 42(12): 1200-1210. DOI: 10.17521/cjpe.2018.0120
LU Ying, LI Kun, NI Rui-Qiang, LIANG Qiang, LI Chuan-Rong, ZHANG Cai-Hong. Effects of fine root decomposition on bacterial community structure of four dominated tree species in Mount Taishan, China. Chinese Journal of Plant Ecology, 2018, 42(12): 1200-1210. DOI: 10.17521/cjpe.2018.0120
树种 Species | C (%) | N (%) | P (%) | C:N | N:P | 木质素 Lignin (%) |
---|---|---|---|---|---|---|
RP | 48.77 ± 0.33c | 3.36 ± 0.002a | 0.53 ± 0.05a | 14.51 ± 0.09d | 6.36 ± 0.34a | 29.59 ± 0.47c |
QA | 46.39 ± 0.17d | 1.08 ± 0.008b | 0.46 ± 0.01a | 43.02 ± 0.17c | 2.34 ± 0.05b | 33.78 ± 0.60b |
PD | 54.65 ± 0.17a | 0.38 ± 0.009d | 0.39 ± 0.03b | 142.48 ± 3.72a | 1.00 ± 0.07c | 38.34 ± 0.30a |
PT | 49.96 ± 0.13b | 0.85 ± 0.004c | 0.41 ± 0.03b | 59.04 ± 0.19b | 2.10 ± 0.14b | 37.78 ± 0.15a |
表1 泰山4个树种细根凋落物初始化学元素含量的差异(平均值±标准误差, n = 3)
Table 1 Differences in initial element contents of fine root litter (mean ± SE, n = 3)
树种 Species | C (%) | N (%) | P (%) | C:N | N:P | 木质素 Lignin (%) |
---|---|---|---|---|---|---|
RP | 48.77 ± 0.33c | 3.36 ± 0.002a | 0.53 ± 0.05a | 14.51 ± 0.09d | 6.36 ± 0.34a | 29.59 ± 0.47c |
QA | 46.39 ± 0.17d | 1.08 ± 0.008b | 0.46 ± 0.01a | 43.02 ± 0.17c | 2.34 ± 0.05b | 33.78 ± 0.60b |
PD | 54.65 ± 0.17a | 0.38 ± 0.009d | 0.39 ± 0.03b | 142.48 ± 3.72a | 1.00 ± 0.07c | 38.34 ± 0.30a |
PT | 49.96 ± 0.13b | 0.85 ± 0.004c | 0.41 ± 0.03b | 59.04 ± 0.19b | 2.10 ± 0.14b | 37.78 ± 0.15a |
图1 泰山4种植物分解速率之间的差异(平均值±标准误差)。PD, 赤松; PT, 油松; QA, 麻栎; RP, 刺槐。不同小写字母代表不同树种之间差异显著(p < 0.05)。
Fig. 1 Difference in decomposition rate among four litter species (mean ± SE) in Mount Taishan. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia. Different lowercase letters represent significant differences among different species (p < 0.05).
树种 Species | 物种数 NO. of observed species | 覆盖率Coverage (%) | Chao1指数 Chao1 index | Ace指数 Ace index | 系统发育多样性Phylogenetic diversity | Shannon-Wiener指数Shannon-Wiener index |
---|---|---|---|---|---|---|
RP | 2 149 ± 71a | 98.6 ± 0.1b | 3 088.0 ± 140.4ab | 3 062.2 ± 143.5ab | 159.2 ± 4.2a | 8.38 ± 0.59a |
QA | 1 970 ± 120a | 97.7 ± 0.2a | 2 824.2 ± 88.5a | 2 843.8 ± 62.0a | 147.8 ± 7.6a | 8.14 ± 0.16a |
PD | 2 759 ± 25b | 98.3 ± 0.2ab | 3 544.7 ± 50.3c | 3 530.6 ± 34.3c | 198.6 ± 5.1b | 8.81 ± 0.35b |
PT | 2 568 ± 39b | 97.6 ± 0.2a | 3 395.0 ± 2.2bc | 3 341.9 ± 68.4bc | 193.1 ± 3.2b | 8.88 ± 0.18b |
表2 细根分解一年后泰山细菌多样性统计分析(平均值±标准误差, n = 3)
Table 2 Statistical analysis of bacterial diversity in Mount Taishan after one year of fine root decomposition (mean ± SE, n = 3)
树种 Species | 物种数 NO. of observed species | 覆盖率Coverage (%) | Chao1指数 Chao1 index | Ace指数 Ace index | 系统发育多样性Phylogenetic diversity | Shannon-Wiener指数Shannon-Wiener index |
---|---|---|---|---|---|---|
RP | 2 149 ± 71a | 98.6 ± 0.1b | 3 088.0 ± 140.4ab | 3 062.2 ± 143.5ab | 159.2 ± 4.2a | 8.38 ± 0.59a |
QA | 1 970 ± 120a | 97.7 ± 0.2a | 2 824.2 ± 88.5a | 2 843.8 ± 62.0a | 147.8 ± 7.6a | 8.14 ± 0.16a |
PD | 2 759 ± 25b | 98.3 ± 0.2ab | 3 544.7 ± 50.3c | 3 530.6 ± 34.3c | 198.6 ± 5.1b | 8.81 ± 0.35b |
PT | 2 568 ± 39b | 97.6 ± 0.2a | 3 395.0 ± 2.2bc | 3 341.9 ± 68.4bc | 193.1 ± 3.2b | 8.88 ± 0.18b |
C (%) | N (%) | P (%) | C:N | N:P | 木质素 Lignin (%) | |
---|---|---|---|---|---|---|
物种数 NO. Of observed species | 0.884** | -0.541 | 0.679* | 0.790* | -0.496 | 0.726* |
覆盖率 Coverage (%) | 0.331 | 0.437 | -0.482 | 0.126 | 0.517 | -0.344 |
Chao1指数 Chao1 index | 0.858** | -0.413 | 0.608 | 0.706* | -0.377 | 0.642 |
Ace指数 Ace index | 0.874** | -0.446 | 0.593 | 0.748* | -0.405 | 0.661* |
系统发育多样性 Phylogenetic diversity | 0.829* | -0.547 | 0.744* | 0.730* | -0.515 | 0.749* |
Shannon-Wiener指数 Shannon-Wiener index | 0.552 | -0.292 | 0.491 | 0.378 | -0.246 | 0.418 |
表3 分解一年后细菌α多样性与凋落物初始化学性质之间的相关分析
Table 3 Correlation analysis between bacterial α diversity and the initial properties of litter after one year of decomposition
C (%) | N (%) | P (%) | C:N | N:P | 木质素 Lignin (%) | |
---|---|---|---|---|---|---|
物种数 NO. Of observed species | 0.884** | -0.541 | 0.679* | 0.790* | -0.496 | 0.726* |
覆盖率 Coverage (%) | 0.331 | 0.437 | -0.482 | 0.126 | 0.517 | -0.344 |
Chao1指数 Chao1 index | 0.858** | -0.413 | 0.608 | 0.706* | -0.377 | 0.642 |
Ace指数 Ace index | 0.874** | -0.446 | 0.593 | 0.748* | -0.405 | 0.661* |
系统发育多样性 Phylogenetic diversity | 0.829* | -0.547 | 0.744* | 0.730* | -0.515 | 0.749* |
Shannon-Wiener指数 Shannon-Wiener index | 0.552 | -0.292 | 0.491 | 0.378 | -0.246 | 0.418 |
图2 细根分解一年后泰山细菌群落结构的非度量多维尺度分析(NMDS)排序图。PD, 赤松; PT, 油松; QA, 麻栎; RP, 刺槐。
Fig. 2 Nonmetric Multidimensional Scaling (NMDS) ordination diagram of bacterial community structure in root litter after one year of decomposition in Mount Taishan. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia.
图3 细菌群落结构与细根初始化学性质的冗余分析(RDA)。PD, 赤松; PT, 油松; QA, 麻栎; RP, 刺槐。
Fig. 3 Redundancy analysis (RDA) based on bacterial community structure and the initial properties of fine root litter. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia.
图4 泰山4个树种之间主要细菌优势类群相对丰度的差异(平均值±标准误差)。A, 优势纲。B, 优势门。PD, 赤松; PT, 油松; QA, 麻栎; RP, 刺槐。不同小写字母表示同一细菌类群不同树种的显著性差异, 相同字母表示无显著性差异。
Fig. 4 Differences in relative abundances of major bacterial dominant groups among the four species in Mount Taishan(mean ± SE). A, Dominant classes. B, Dominant phyla. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia. Different lowercase letters indicate the significant differences in different species of the same bacterial group, while the same letter indicates no significant difference.
优势门 Dominant phylum | C (%) | N (%) | P (%) | 木质素 Lignin (%) | C:N | N:P | 分解速率 Decomposition rate |
---|---|---|---|---|---|---|---|
变形菌门 Proteobacteria | -0.64 | 0.57 | 0.77* | -0.63 | -0.69* | 0.52 | 0.71* |
放线菌门 Actinobacteria | 0.61 | -0.32 | -0.69* | 0.48 | 0.50 | -0.25 | -0.62 |
拟杆菌门 Bacteroidetes | 0.60 | 0.09 | 0.09 | 0.09 | 0.43 | 0.03 | -0.36 |
酸杆菌门 Acidobacteria | -0.46 | -0.48 | -0.57 | 0.35 | -0.16 | -0.42 | 0.03 |
分解速率 Decomposition rate | -0.76** | 0.74** | 0.67* | -0.90** | -0.82** | 0.74** | 1.00 |
表4 细菌优势门相对丰度与细根分解速率、凋落物初始化学性质之间的相关分析
Table 4 Correlation analysis among the bacterial dominant phylum , the decomposition rate of fine roots , and the initial properties of litter
优势门 Dominant phylum | C (%) | N (%) | P (%) | 木质素 Lignin (%) | C:N | N:P | 分解速率 Decomposition rate |
---|---|---|---|---|---|---|---|
变形菌门 Proteobacteria | -0.64 | 0.57 | 0.77* | -0.63 | -0.69* | 0.52 | 0.71* |
放线菌门 Actinobacteria | 0.61 | -0.32 | -0.69* | 0.48 | 0.50 | -0.25 | -0.62 |
拟杆菌门 Bacteroidetes | 0.60 | 0.09 | 0.09 | 0.09 | 0.43 | 0.03 | -0.36 |
酸杆菌门 Acidobacteria | -0.46 | -0.48 | -0.57 | 0.35 | -0.16 | -0.42 | 0.03 |
分解速率 Decomposition rate | -0.76** | 0.74** | 0.67* | -0.90** | -0.82** | 0.74** | 1.00 |
优势纲 Dominant class | C (%) | N (%) | P (%) | 木质素 Lignin (%) | C:N | N:P | 分解速率 Decomposition rate |
---|---|---|---|---|---|---|---|
α-变形菌纲 Alphaproteobacteria | -0.33 | 0.79** | 0.56 | -0.71* | -0.73* | 0.84** | 0.63* |
β-变形菌纲 Betaproteobacteria | -0.42 | -0.18 | 0.09 | -0.00 | -0.11 | -0.21 | 0.19 |
γ-变形菌纲 Gammaproteobacteria | -0.08 | 0.49 | 0.47 | -0.37 | -0.25 | 0.43 | 0.24 |
不明放线菌纲unidentified-Actinobacteria | 0.84** | -0.25 | -0.53 | 0.37 | 0.73* | -0.25 | -0.61 |
鞘脂杆菌纲 Sphingobacteriia | 0.20 | 0.40 | 0.49 | -0.23 | -0.00 | 0.30 | 0.05 |
表5 细菌优势纲相对丰度与细根分解速率、凋落物初始化学性质之间的相关分析
Table 5 Correlation analysis among the decomposition rate of fine roots and bacterial dominant class and the initial properties of litter
优势纲 Dominant class | C (%) | N (%) | P (%) | 木质素 Lignin (%) | C:N | N:P | 分解速率 Decomposition rate |
---|---|---|---|---|---|---|---|
α-变形菌纲 Alphaproteobacteria | -0.33 | 0.79** | 0.56 | -0.71* | -0.73* | 0.84** | 0.63* |
β-变形菌纲 Betaproteobacteria | -0.42 | -0.18 | 0.09 | -0.00 | -0.11 | -0.21 | 0.19 |
γ-变形菌纲 Gammaproteobacteria | -0.08 | 0.49 | 0.47 | -0.37 | -0.25 | 0.43 | 0.24 |
不明放线菌纲unidentified-Actinobacteria | 0.84** | -0.25 | -0.53 | 0.37 | 0.73* | -0.25 | -0.61 |
鞘脂杆菌纲 Sphingobacteriia | 0.20 | 0.40 | 0.49 | -0.23 | -0.00 | 0.30 | 0.05 |
图5 细菌优势门与细根初始化学性质的冗余分析(RDA)。PD, 赤松; PT, 油松; QA, 麻栎; RP, 刺槐。
Fig. 5 Redundancy analysis (RDA) based on dominant bacterial phylum and the initial properties of fine root litter. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia.
[1] |
Adam SW, Zacchaeus GC, Cindy ML ( 2013). Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshwater Science, 32, 663-672.
DOI URL |
[2] |
Barret M, Morrissey JP, O’Gara F ( 2011). Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, 47, 729-743.
DOI URL |
[3] |
Chapman SK, Koch GW ( 2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem?Plant and Soil, 299, 153-162.
DOI URL |
[4] |
Chigineva NI, Aleksandrova AV, Tiunov AV ( 2009). The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Applied Soil Ecology, 42, 264-270.
DOI URL |
[5] | Co?teaux M, Bottner P, Berg B ( 1995). Litter decomposition, climate and litter quality. Tree, 10, 63-66. |
[6] |
Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2017). Bacterial structure and diversity in rhizosphere and non-?rhizosphere of Robinia pseudoacacia in the Yellow River Delta. Acta Pedologica Sinica, 54, 1293-1302.
DOI URL |
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2017). 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54, 1293-1302.]
DOI URL |
|
[7] |
Eichorst SA, Kuske CR, Schmidt TM ( 2011). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Applied and Environmental Microbiology, 77, 586-596.
DOI URL PMID |
[8] |
Elser JJ, Acharya K, Kyle M ( 2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[9] |
Fierer N, Bradford MA, Jackson RB ( 2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
DOI URL |
[10] |
Gessner MO, Chauvet E, Dobson M ( 1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377-384.
DOI URL |
[11] | Grier CC ( 1981). Biomass distribution and above- and below-?ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research, 11, 155-167. |
[12] |
Gui H, Purahong W, Hyde KD, Xu JC, Mortimer PE ( 2017). The arbuscular mycorrhizal fungus Funneliformis mosseae alters bacterial communities in subtropical forest soils during litter decomposition. Frontiers in Microbiology, 8, 1-11.
DOI URL PMID |
[13] |
Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK . ( 2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521, 208-212.
DOI URL PMID |
[14] |
Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N ( 2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3, 442-453.
DOI URL PMID |
[15] |
Kennedy AC ( 1999). Bacterial diversity in agroecosystems. Agriculture Ecosystems and Environment, 74(1-3), 65-76.
DOI URL |
[16] | Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E ( 2006). Introduction to the Proteobacteria. The Prokaryotes, 5(3), 4-37. |
[17] | Luo YQ, Zhao XY, Wang T, Li YQ, Zuo XA, Ding JP ( 2017). Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 26(2), 197-207. |
[ 罗永清, 赵学勇, 王涛, 李玉强, 左小安, 丁杰萍 ( 2017). 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 26(2), 197-207.] | |
[18] |
Lydell C, Dowell L, Sikaroodi M, Gillevet P , Emerson ( 2004). A population survey of members of the phylum Bacteroidetes isolated from salt marsh sediments along the east coast of the United States. Microbial Ecology, 48, 263-273.
DOI URL PMID |
[19] |
McLaren JR, Turkington R ( 2010). Plant functional group identity differentially affects leaf and root decomposition. Global Change Biology, 16, 3075-3084.
DOI URL |
[20] |
Meentemeyer V ( 1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
DOI URL |
[21] |
Rong L, Li XW, Zhu TH, Zhang J, Yuan WY, Wang Q ( 2009). Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots. Acta Prataculturae Sinica, 18(4), 117-124.
DOI URL |
[ 荣丽, 李贤伟, 朱天辉, 张健, 袁渭阳, 王巧 ( 2009). 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群. 草业学报, 18(4), 117-124.]
DOI URL |
|
[22] |
Sauvadet M, Chauvat M, Cluzeau D, Maron PA, Villenave C, Bertrand I ( 2016). The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology & Biochemistry, 95, 262-274.
DOI URL |
[23] | Shen YF, Wang N, Cheng RM, Xiao WF, Yang S, Guo Y, Lei L, Zeng LX, Wang XR ( 2017). Characteristics of fine roots of Pinus massoniana in the Three Gorges Reservoir Area, China. Forests, 8(6), 1-13. |
[24] |
Soares RA, Roesch LFW, Zanatta G, De Oliveira Camargo FA, Passaglia LMP ( 2006). Occurrence and distribution of nitrogen fixing bacterial community associated with oat ( Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology, 33, 221-234.
DOI URL |
[25] |
Sun CL, Zhang G, Cheng RJ, Zhu LQ, Ding JB, Chang WS ( 2017). Microbial community structure and diversity of sheepfold atmosphere by 16S rRNA high-throughput sequencing. Acta Veterinaria et Zootechnica Sinica, 48, 1314-1322.
DOI URL |
[ 孙翠丽, 张阁, 程汝佳, 朱良全, 丁家波, 常维山 ( 2017). 16S rRNA高通量测序方法检测羊圈空气微生物群落结构及多样性. 畜牧兽医学报, 48, 1314-1322.]
DOI URL |
|
[26] | Sun H, Wang QX, Liu N, Li L, Zhang CG, Liu ZB, Zhang YY ( 2017). Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Applied Soil Ecology, 111, 17-24. |
[27] |
Taylor BR, Parkinson D, Parsons WFJ ( 1989). Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70, 97-104.
DOI URL |
[28] |
Tuomi M, Thum T, Jarvinen H, Fronzek S, Berg B, Harmon M, Trofymow JA, Sevanto S, Liski J ( 2009). Leaf litter decomposition—Estimates of global variability based on Yasso07 model. Ecological Modeling, 220, 3362-3371.
DOI URL |
[29] |
Urbanová M, ?najdr J, Baldrian P ( 2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology & Biochemistry, 84, 53-64.
DOI URL |
[30] |
Větrovsky T, Baldrian P ( 2015). An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biology and Fertility of Soils, 51, 827-837.
DOI URL |
[31] |
Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall DH ( 2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI URL PMID |
[32] |
Wymore AS, Salpas E, Casaburi G, Liu CM, Price LB, Hungate BA, McDowell WH, Marks JC ( 2018). Effects of plant species on stream bacterial communities via leachate from leaf litter. Hydrobiologia, 807, 131-144.
DOI URL |
[33] |
Zhang CH, Zhang LM, Liu XR, Xin XP, Li SG ( 2011). Root tissue and shoot litter decomposition of dominant species Stipa baicalensis in Hulun Buir meadow steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 35, 1156-1166.
DOI URL |
[ 张彩虹, 张雷明, 刘杏认, 辛晓平, 李胜功 ( 2011). 呼伦贝尔草甸草原优势种贝加尔针茅根系组织和地上部分凋落物的分解. 植物生态学报, 35, 1156-1166.]
DOI URL |
|
[34] | Zhang MJ ( 2016). Effects of Forest Gap Disturbance on Microbial Biomass and Bacterial Community Structure in the Process of Foliar Litter Decomposition. Master degree dissertation, Sichuan Agricultural University, Chengdu. |
[ 张明锦 ( 2016). 林窗干扰对凋落叶分解过程中微生物生物量和细菌群落结构的影响. 硕士论文, 四川农业大学, 成都.] | |
[35] |
Zhang MJ, Zhang J, Ji TW, Liu H, Li X, Zhang Y, Yang WQ, Chen LH ( 2015). Influence of forest gap on bacterial community structure and diversity during litter decomposition. Ecology and Environment Sciences, 24, 1287-1294.
DOI URL |
[ 张明锦, 张健, 纪托未, 刘华, 李勋, 张艳, 杨万勤, 陈良华 ( 2015). 林窗对凋落物分解过程中细菌群落结构和多样性的影响. 生态环境学报, 24, 1287-1294.]
DOI URL |
|
[36] |
Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ ( 2014). An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLOS ONE, 9, e93773. DOI: 10.1371/journal.pone.0093773.
DOI URL PMID |
[37] |
Zhao BY, Xing P, Wu QL ( 2017). Microbes participated in macrophyte leaf litters decomposition in freshwater habitat. FEMS Microbiology Ecology, 93, fix108. DOI: 10.1093/ femsec/fix108.
DOI URL PMID |
[38] |
Zhao YY, Wu FZ, Yang WQ, Tan B, He W ( 2016). Variations in bacterial communities during Foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Canadian Journal of Microbiology, 62, 1-14.
DOI URL PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[7] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[8] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[9] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[10] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[11] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[12] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[13] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[14] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[15] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19