植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 434-443.DOI: 10.17521/cjpe.2020.0204
所属专题: 全球变化与生态系统; 生态系统结构与功能; 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学
王毅1,2, 孙建2,*(), 叶冲冲2,3, 曾涛1,*(
)
收稿日期:
2020-06-22
接受日期:
2020-10-22
出版日期:
2021-05-20
发布日期:
2020-12-09
通讯作者:
孙建,曾涛
作者简介:
Zeng T:zengtao@cdut.cn)基金资助:
WANG Yi1,2, SUN Jian2,*(), YE Chong-Chong2,3, ZENG Tao1,*(
)
Received:
2020-06-22
Accepted:
2020-10-22
Online:
2021-05-20
Published:
2020-12-09
Contact:
SUN Jian,ZENG Tao
摘要:
近年来, 在人类活动和气候变化的影响下, 物种多样性丧失趋势不断加剧, 对生态系统功能带来严重后果。目前, 关于生态系统功能的研究, 忽略了土壤和微生物碳氮养分循环过程对地上生态系统功能(AEF)的重要驱动作用, 而土壤碳氮要素和微生物的任何变化都有可能改变地下群落对生态系统功能的维持作用。该研究旨在探究高寒草地AEF的主要控制因子, 以及其关键要素对AEF的作用机理。2015年7-8月, 对青藏高原地区115个样点进行了草地群落和土壤属性等要素样带调查; 综合植物地上生物量, 叶片碳、氮和磷含量等参数计算AEF值, 分析地下土壤有机碳含量、全氮含量、生物量等关键要素对AEF值的影响。结合取样点年降水量和年平均气温, 深入探讨影响AEF的主要控制因子和作用机理。结果表明降水对AEF有较大影响, 而气温影响相对较低。年降水量、土壤微生物生物量碳含量和干旱指数对AEF值的相对重要性贡献较高(重要值分别为21.1%、10.9%和10.1%), 控制青藏高原高寒草地AEF值的关键是土壤因子。在气候因子对土壤养分和微生物的作用下, 土壤微生物生物量氮含量在调控高寒草地AEF值方面发挥重要作用。
王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能. 植物生态学报, 2021, 45(5): 434-443. DOI: 10.17521/cjpe.2020.0204
WANG Yi, SUN Jian, YE Chong-Chong, ZENG Tao. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 434-443. DOI: 10.17521/cjpe.2020.0204
调查指标 Survey indicator | p | 平均值 Mean | 标准误 SE | 最大值 Max | 最小值 Min |
---|---|---|---|---|---|
地上生态系统功能 Aboveground ecosystem functions | 0.200 | 0.05 | 0.54 | 1.77 | -1.70 |
地上生物量 Aboveground biomass (g·m-2) | 0.000 | 91.15 | 77.22 | 318.48 | 7.56 |
地下生物量 Belowground biomass (g·m-2) | 0.000 | 3.20 | 6.16 | 42.53 | 0.01 |
叶片碳含量 Leaf carbon content (g·kg-1) | 0.000 | 40.59 | 3.75 | 45.12 | 27.42 |
叶片磷含量 Leaf phosphorus content (g·kg-1) | 0.001 | 1.67 | 0.79 | 5.32 | 0.34 |
叶片氮含量 Leaf nitrogen content (g·kg-1) | 0.098 | 17.98 | 4.34 | 34.44 | 5.90 |
土壤含水量 Soil water content (%) | 0.000 | 0.15 | 0.13 | 0.53 | 0.01 |
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 0.001 | 2.50 | 1.66 | 8.48 | 0.32 |
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 0.000 | 130.35 | 118.11 | 536.78 | 12.03 |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.000 | 24.23 | 25.74 | 128.63 | 0.75 |
土壤总磷含量 Soil total phosphorus content (g·kg-1) | 0.025 | 0.49 | 0.32 | 2.03 | 0.05 |
土壤总氮含量 Soil total nitrogen content (g·kg-1) | 0.000 | 1.64 | 1.42 | 6.82 | 0.29 |
土壤微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 0.000 | 398.98 | 423.82 | 2 064.00 | 3.50 |
土壤微生物生物量氮含量 Microbial biomass nitrogen content (mg·kg-1) | 0.000 | 123.34 | 115.03 | 451.20 | 2.60 |
表1 青藏高原样带调查各指标描述性统计
Table 1 Descriptive statistics of each index in the transect survey on the Qingzang Plateau
调查指标 Survey indicator | p | 平均值 Mean | 标准误 SE | 最大值 Max | 最小值 Min |
---|---|---|---|---|---|
地上生态系统功能 Aboveground ecosystem functions | 0.200 | 0.05 | 0.54 | 1.77 | -1.70 |
地上生物量 Aboveground biomass (g·m-2) | 0.000 | 91.15 | 77.22 | 318.48 | 7.56 |
地下生物量 Belowground biomass (g·m-2) | 0.000 | 3.20 | 6.16 | 42.53 | 0.01 |
叶片碳含量 Leaf carbon content (g·kg-1) | 0.000 | 40.59 | 3.75 | 45.12 | 27.42 |
叶片磷含量 Leaf phosphorus content (g·kg-1) | 0.001 | 1.67 | 0.79 | 5.32 | 0.34 |
叶片氮含量 Leaf nitrogen content (g·kg-1) | 0.098 | 17.98 | 4.34 | 34.44 | 5.90 |
土壤含水量 Soil water content (%) | 0.000 | 0.15 | 0.13 | 0.53 | 0.01 |
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 0.001 | 2.50 | 1.66 | 8.48 | 0.32 |
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 0.000 | 130.35 | 118.11 | 536.78 | 12.03 |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.000 | 24.23 | 25.74 | 128.63 | 0.75 |
土壤总磷含量 Soil total phosphorus content (g·kg-1) | 0.025 | 0.49 | 0.32 | 2.03 | 0.05 |
土壤总氮含量 Soil total nitrogen content (g·kg-1) | 0.000 | 1.64 | 1.42 | 6.82 | 0.29 |
土壤微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 0.000 | 398.98 | 423.82 | 2 064.00 | 3.50 |
土壤微生物生物量氮含量 Microbial biomass nitrogen content (mg·kg-1) | 0.000 | 123.34 | 115.03 | 451.20 | 2.60 |
图2 气候因子、地下生物量和土壤因子与地上生态系统功能(AEF)的关系。A, AEF值与各因子间的相关性热度图, 黑色表示正相关, 红色表示负相关。相关显著性: *, p < 0.05; **, p < 0.01。B, AEF值和各因子的主成分分析。AI, 干旱指数; AMT, 年平均气温; ATP, 年降水量; BGB, 地下生物量; EMF, 生态系统多功能性; MBC, 土壤微生物生物量碳含量; MBN, 土壤微生物生物量氮含量; SAN, 土壤速效氮含量; SAP, 土壤速效磷含量; SOC, 土壤有机碳含量; STN, 土壤全氮含量; STP, 土壤全磷含量。
Fig. 2 Relationships between climate factors, belowground biomass, soil factors and aboveground ecosystem functions (AEF). A, The correlation between AEF value and each factor; black box indicates positive correlation, and red box indicates negative correlation, * and ** represented significantly correlated with AEF value (p < 0.05 and p < 0.01). B, Principal component analysis of AEF value and each factor. AI, aridity index; AMT, mean annual air temperature; ATP, mean annual precipitation; BGB, belowground biomass; EMF, ecosystem multi-function; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SAN, soil available nitrogen content; SAP, soil available phosphorus content; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content.
图3 环境因子和土壤要素对地上生态系统功能的相对重要性分析。AI, 干旱指数; AMT, 年平均气温; ATP, 年降水量; BGB, 地下生物量; MBC, 土壤微生物生物量碳含量; MBN, 土壤微生物生物量氮含量; SAN, 土壤速效氮含量; SAP, 土壤速效磷含量; SOC, 土壤有机碳含量; STN, 土壤全氮含量; STP, 土壤全磷含量。
Fig. 3 Relative importance of environmental factors and soil factors to aboveground ecosystem functions. AI, aridity index; AMT, mean annual air temperature; ATP, mean annual precipitation; BGB, belowground biomass; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SAN, soil available nitrogen content; SAP, soil available phosphorus content; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content.
图4 气候和土壤因子与地上生态系统功能之间的关系。AEF, 地上生态系统功能值; AI, 干旱指数; ATP, 年降水量; MBC, 土壤微生物生物量碳含量; MBN, 土壤微生物生物量氮含量; SOC, 土壤有机碳含量; STN, 土壤全氮含量。除AEF外, 其余因子均为取对数后的数据。
Fig. 4 Relationships of climate and soil factors with aboveground ecosystem functions. AEF, aboveground ecosystem functions value; AI, aridity index; ATP, mean annual precipitation; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; STN, soil total nitrogen content. Except for AEF, all other are log-transformed data.
图5 土壤养分性状和微生物性状随气候因子的变化情况。AI, 干旱指数; ATP, 年降水量; MBC, 土壤微生物生物量碳含量; MBN, 土壤微生物生物量氮含量; SOC, 土壤有机碳含量; STN, 土壤全氮含量。因子均为取对数后的数据。
Fig. 5 Changes of soil nutrient and microbial properties with climatic factors. AI, aridity index; ATP, mean annual precipitation; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; STN, soil total nitrogen content. All data are log-transformed data.
图6 气候和土壤因子对地上生态系统功能值(AEF)的效应。图上表示的均为显著影响的路径(p < 0.05), 实线表示正效应, 虚线表示负效应。AI, 干旱指数; ATP, 年降水量; MBC, 土壤微生物生物量碳含量; MBN, 土壤微生物生物量氮含量; SOC, 土壤有机碳含量; STN, 土壤全氮含量。
Fig. 6 Effects of climatic and soil factors on aboveground ecosystem functions value (AEF). The path with significant effect is shown in the figure (p < 0.05), the solid lines indicate a positive effect and the dotted line indicates a positive effect. AI, aridity index; ATP, mean annual precipitation; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; STN, soil total nitrogen content.
[1] | Bai JB,Xu XL,Fu G,Song MH,He YT,Jiang J(2011).Effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on Tibetan Plateau.Agricultural Science & Technology,12, 1909-1912. |
[2] | Bao SD(2000).Soil and Agricultural Chemistry Analysis.China Agriculture Press,Beijing. |
[鲍士旦(2000).土壤农化分析.中国农业出版社,北京.] | |
[3] |
Bardgett RD,van der Putten WH(2014).Belowground biodiversity and ecosystem functioning.Nature,515, 505-511.
DOI URL |
[4] |
Baumann F,He J,Schmidt K,Kühn P,Scholten T(2009).Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau.Global Change Biology,15, 3001-3017.
DOI URL |
[5] | Bradford MA,Wood SA,Bardgett RD,Black HIJ,Bonkowski M,Eggers T,Grayston SJ,Kandeler E,Manning P,Setälä H,Jones TH(2014).Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.Proceedings of the National Academy of Sciences of the United States of America,111, 14478-14483. |
[6] |
Chen QL,Ding J,Zhu D,Hu HW,Delgado-Baquerizo M,Ma YB,He JZ,Zhu YG(2019).Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils.Soil Biology & Biochemistry,141, 107686. DOI:10.1016/j.soilbio.2019.107686.
DOI URL |
[7] |
Cong WF,van Ruijven J,van der Werf W,de Deyn GB,Mommer L,Berendse F,Hoffland E(2015).Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil.Soil Biology & Biochemistry,80, 341-348.
DOI URL |
[8] |
Delgado-Baquerizo M,Eldridge DJ,Ochoa V,Gozalo B,Singh BK,Maestre FT(2017).Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe.Ecology Letters,20, 1295-1305.
DOI PMID |
[9] |
Delgado-Baquerizo M,Maestre FT,Reich PB,Jeffries TC,Gaitan JJ,Encinar D,Berdugo M,Campbell CD,Singh BK(2016).Microbial diversity drives multifunctionality in terrestrial ecosystems.Nature Communications,7, 10541. DOI:10.1038/ncomms10541.
DOI PMID |
[10] | Friedman JH,Popescu BE(2008).Predictive learning via rule ensembles.The Annals of Applied Statistics,2, 916-954. |
[11] |
Fu YW,Tian DS,Wang JS,Niu SL,Zhao KT(2019).Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands.Chinese Journal of Plant Ecology,43, 566-575.
DOI URL |
[符义稳,田大栓,汪金松,牛书丽,赵垦田(2019).内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素.植物生态学报,43, 566-575.] | |
[12] |
Gans JD,Wolinsky M,Dunbar J(2005).Computational improvements reveal great bacterial diversity and high metal toxicity in soil.Science,309, 1387-1390.
DOI URL |
[13] |
Hooper DU,Bignell DE,Brown VK,Brussard L,Mark Dangerfield J,Wall DH,Wardle DA,Coleman DC,Giller KE,Lavelle P,van der Putten WH,de Ruiter PC,Rusek J,Silver WL,Tiedje JM,Wolters V(2000).Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks.BioScience,50, 1049-1061.
DOI URL |
[14] |
Hooper DU,Chapin FS,Ewel JJ,Hector A,Inchausti P,Lavorel S,Lawton JH,Lodge DM,Loreau M,Naeem S,Schmid B,Setälä H,Symstad AJ,Vandermeer J,Wardle DA(2005).Effects of biodiversity on ecosystem functioning: a consensus of current knowledge.Ecological Monographs,75, 3-35.
DOI URL |
[15] | Huang CY(2000).Pedology.China Agriculture Press,Beijing. |
[黄昌勇(2000).土壤学,中国农业出版社,北京.] | |
[16] |
Jing X,Sanders NJ,Shi Y,Chu HY,Classen AT,Zhao K,Chen LT,Shi Y,Jiang YX,He JS(2015).The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate.Nature Communications,6, 8159. DOI:10.1038/ncomms9159.
DOI PMID |
[17] |
Lefcheck JS,Byrnes JEK,Isbell F,Gamfeldt L,Griffin JN,Eisenhauer N,Hensel MJS,Hector A,Cardinale BJ,Duffy JE(2015).Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.Nature Communications,6, 6936. DOI:10.1038/ncomms7936.
DOI URL |
[18] | Li G,Wang LJ,Li YJ,Qiao J,Zhang HF,Song XL,Yang DL(2013).Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China.Chinese Journal of Applied Ecology,24, 1639-1646. |
[李刚,王丽娟,李玉洁,乔江,张海芳,宋晓龙,杨殿林(2013).呼伦贝尔沙地不同植被恢复模式对土壤固氮微生物多样性的影响.应用生态学报,24, 1639-1646.] | |
[19] | Li L,Gao JQ,Lei GC,Lü C,Suo L(2011).Distribution patterns of soil organic carbon and total nitrogen in Zoige peat land with different ground water table.Chinese Journal of Ecology,30, 2449-2455. |
[李丽,高俊琴,雷光春,吕偲,索郎夺尔基(2011).若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律.生态学杂志,30, 2449-2455.] | |
[20] |
López-Rojo N,Pozo J,Pérez J,Basaguren A,Martínez A,Tonin AM,Correa-Araneda F,Boyero L(2019).Plant diversity loss affects stream ecosystem multifunctionality.Ecology,100, e02847. DOI:10.1002/ecy.2847.
DOI |
[21] |
Luo YQ,Su B,Currie WS,Dukes JS,Finzi A,Hartwig U,Hungate B,Mc Murtrie RE,Oren R,Parton WJ,Pataki DE,Shaw MR,Zak DR,Field CB(2004).Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide.BioScience,54, 731-739.
DOI URL |
[22] |
Maestre FT,Quero JL,Gotelli NJ,Escudero A,Ochoa V,Delgado-Baquerizo M,Garcia-Gomez M,Bowker MA,Soliveres S,Escolar C,Garcia-Palacios P,Berdugo M,Valencia E,Gozalo B,Gallardo A,et al.(2012).Plant species richness and ecosystem multifunctionality in global drylands.Science,335, 214-218.
DOI URL |
[23] | Meyer ST,Ptacnik R,Hillebrand H,Bessler H,Buchmann N,Ebeling A,Eisenhauer N,Engels C,Fischer M,Halle S,Klein AM,Oelmann Y,Roscher C,Rottstock T,Scherber C,et al.(2018).Biodiversity-multifunctionality relationships depend on identity and number of measured functions.Nature Ecology & Evolution,2, 44-49. |
[24] |
Niu SL,Wu MY,Han Y,Xia JY,Li LH,Wan SQ(2007).Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe.New Phytologist,177, 209-219.
DOI URL |
[25] |
Perkins DM,Bailey RA,Dossena M,Gamfeldt L,Reiss J,Trimmer M,Woodward G(2015).Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes.Global Change Biology,21, 396-406.
DOI PMID |
[26] |
Shipley B,Meziane D(2002).The balanced-growth hypothesis and the allometry of leaf and root biomass allocation.Functional Ecology,16, 326-331.
DOI URL |
[27] |
Sistla SA,Schimel JP(2012).Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change.New Phytologist,196, 68-78.
DOI PMID |
[28] | Sun HL,Zheng D,Yao TD,Zhang YL(2012).Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Acta Geographica Sinica,67, 3-12. |
[孙鸿烈,郑度,姚檀栋,张镱锂(2012).青藏高原国家生态安全屏障保护与建设.地理学报,67, 3-12.] | |
[29] |
Sun J,Ma BB,Lu XY(2018).Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau.Land Degradation & Development,29, 337-348.
DOI URL |
[30] | Sun J,Zhang ZC,Dong SK(2019).Adaptive management of alpine grassland ecosystems over Tibetan Plateau.Pratacultural Science,36, 933-938. |
[孙建,张振超,董世魁(2019).青藏高原高寒草地生态系统的适应性管理.草业科学,36, 933-938.] | |
[31] |
Sun J,Zhou TC,Liu M,Chen YC,Liu GH,Xu M,Shi PL,Peng F,Tsunekawa A,Liu Y,Wang XD,Dong SK,Zhang YJ,Li YN(2020).Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau.Global Ecology and Biogeography,29, 50-64.
DOI URL |
[32] |
Tedersoo L,Bahram M,Põlme S,Kõljalg U,Yorou NS,Wijesundera L,Ruiz LV,Vasco-Palacios AM,Thu PQ,Suija A,Smith ME,Sharp C,Saluveer E,Saitta A,Rosas M,et al.(2014).Global diversity and geography of soil fungi.Science,346, 1256688. DOI:10.1126/science.1256688.
DOI PMID |
[33] |
van der Heijden MGA,Klironomos JN,Ursic M,Moutoglis P,Streitwolf-Engel R,Boller T,Wiemken A,Sanders IR(1998).Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.Nature,396, 69-72.
DOI URL |
[34] | Wagg C,Bender SF,Widmer F,van der Heijden MGA(2014).Soil biodiversity and soil community composition determine ecosystem multifunctionality.Proceedings of the National Academy of Sciences of the United States of America,111, 5266-5270. |
[35] | Wang DL,Wang L(2019).A new perspective on the concept of grassland management.Chinese Science Bulletin,64, 1106-1113. |
[王德利,王岭(2019).草地管理概念的新释义.科学通报,64, 1106-1113.] | |
[36] | Wang SP,Zhou GS,Lü YC,Zou JJ(2002).Distribution of soil carbon, nitrogen and phosphorus along Northeast China Transect (NECT) and their relationships with climatic factors.Acta Phytoecologica Sinica,26, 513-517. |
[王淑平,周广胜,吕育财,邹建军(2002).中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系.植物生态学报,26, 513-517.] | |
[37] |
Wang X,Xu ZW,Lü X,Wang RZ,Cai JP,Yang S,Li MH,Jiang Y(2017).Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland.Plant and Soil,418, 241-253.
DOI URL |
[38] | Wang Y,Liu BY,Liu M,Sun J,Zeng T(2019).Synergistic and inhibitory effects of soil enzymes along desertified gradients of the Zoige alpine meadow.Pratacultural Science,36, 939-951. |
[王毅,刘碧颖,刘苗,孙建,曾涛(2019).若尔盖地区沙化草地土壤酶协同和抑制效应.草业科学,36, 939-951.] | |
[39] |
Wardle DA,Bardgett RD,Klironomos JN,Setälä H,van der Putten WH,Wall DH(2004).Ecological linkages between aboveground and belowground biota.Science,304, 1629-1633.
PMID |
[40] | Whitford WG(2002).Ecology of Desert Systems.Academic Press, San Diego,USA. |
[41] | Xiong DP,Zhao GS,Wu JS,Shi PL,Zhang XZ(2016).The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau.Acta Ecologica Sinica,36, 3362-3371. |
[熊定鹏,赵广帅,武建双,石培礼,张宪洲(2016).羌塘高寒草地物种多样性与生态系统多功能关系格局.生态学报,36, 3362-3371.] | |
[42] |
Xu ZW,Li MH,Zimmermann NE,Li SP,Li H,Ren HY,Sun H,Han XG,Jiang Y,Jiang L(2018).Plant functional diversity modulates global environmental change effects on grassland productivity.Journal of Ecology,106, 1941-1951.
DOI URL |
[43] | Yan ZQ,Qi YC,Peng Q,Dong YS,He YL,Li ZL(2017).Advances in the effects of simulated precipitation and nitrogen deposition on grassland biomass.Acta Agrestia Sinica,25, 1165-1170. |
[闫钟清,齐玉春,彭琴,董云社,贺云龙,李兆林(2017).模拟降水和氮沉降增加对草地生物量影响的研究进展.草地学报,25, 1165-1170.] | |
[44] |
Yang XX,Ren F,Zhou HK,He JS(2014).Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,38, 159-166.
DOI URL |
[杨晓霞,任飞,周华坤,贺金生(2014).青藏高原高寒草甸植物群落生物量对氮、磷添加的响应.植物生态学报,38, 159-166.] | |
[45] | Yang YH,Piao SL(2006).Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau.Journal of Plant Ecology (Chinese Version),30, 1-8. |
[杨元合,朴世龙(2006).青藏高原草地植被覆盖变化及其与气候因子的关系.植物生态学报,30, 1-8.] | |
[46] | Yang YH,Rao S,Hu HF,Chen AP,Ji CJ,Zhu B,Zuo WY,Li XR,Shen HH,Wang ZH,Tang YH,Fang JY(2004).Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau.Chinese Biodiversity,12, 200-205. |
[杨元合,饶胜,胡会峰,陈安平,吉成均,朱彪,左闻韵,李轩然,沈海花,王志恒,唐艳鸿,方精云(2004).青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系.生物多样性,12, 200-205.] | |
[47] |
Zavaleta ES,Pasari JR,Hulvey KB,Tilman GD(2010).Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity.Proceedings of the National Academy of Sciences of the United States of America,107, 1443-1446.
DOI PMID |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[6] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[7] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[8] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[9] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[15] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19