植物生态学报 ›› 2022, Vol. 46 ›› Issue (3): 330-339.DOI: 10.17521/cjpe.2021.0166
所属专题: 凋落物
刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽*()
收稿日期:
2021-04-30
接受日期:
2021-09-01
出版日期:
2022-03-20
发布日期:
2021-10-15
通讯作者:
张丽
作者简介:
* (zhangli19830116@hotmail.com)基金资助:
LIU Yao, JIAO Ze-Bin, TAN Bo, LI Han, WANG Li-Xia, LIU Si-Ning, YOU Cheng-Ming, XU Zhen-Feng, ZHANG Li*()
Received:
2021-04-30
Accepted:
2021-09-01
Online:
2022-03-20
Published:
2021-10-15
Contact:
ZHANG Li
Supported by:
摘要:
森林凋落物作为森林土壤腐殖质的主要来源, 在土壤腐殖质的形成中发挥着重要作用, 但不同森林类型凋落物因其含量、组成等的不同, 对土壤腐殖质的影响也不同。该研究以川西亚高山针叶林、阔叶林和针阔混交林3种不同森林类型为对象, 采用凋落物原位控制实验, 对比研究不同关键期凋落物去除对土壤可提取腐殖质、胡敏酸和富里酸含量及胡敏酸/富里酸、胡敏酸/可提取腐殖质的影响。主要结果: (1)土壤可提取腐殖质、胡敏酸和富里酸含量在不同森林类型中差异显著。土壤可提取腐殖质含量总体表现为针叶林>针阔混交林>阔叶林, 胡敏酸含量总体表现为针阔混交林>针叶林>阔叶林, 而富里酸含量则表现为针叶林>阔叶林>针阔混交林, 其中3种林型中土壤腐殖质的主要成分为富里酸, 总体均表现为富里酸型。不同采样时期也显著影响了土壤可提取腐殖质、胡敏酸和富里酸含量, 总体均表现为先升高后下降的趋势。除个别采样时期外, 凋落物去除总体降低了土壤可提取腐殖质、胡敏酸和富里酸的含量。(2)胡敏酸/富里酸和胡敏酸/可提取腐殖质的结果显示3种林型土壤总体腐殖化程度均较低, 整体表现为针阔混交林>阔叶林>针叶林, 凋落物去除在一定程度上有利于提高阔叶林与针阔混交林的腐殖质品质。(3)相关分析表明不同凋落物处理间土壤可提取腐殖质与土壤有机碳含量、全氮含量和土壤含水量呈显著正相关关系, 与温度呈显著负相关关系。综上所述, 短期的凋落物去除会降低土壤腐殖物质的含量, 但不同林型间由于凋落物类型差异会导致土壤腐殖质的不同变化, 说明土壤腐殖质的动态变化受凋落物类型以及环境因素的综合调控。因此, 关于凋落物变化对土壤腐殖质的影响还需进一步的长期研究。
刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响. 植物生态学报, 2022, 46(3): 330-339. DOI: 10.17521/cjpe.2021.0166
LIU Yao, JIAO Ze-Bin, TAN Bo, LI Han, WANG Li-Xia, LIU Si-Ning, YOU Cheng-Ming, XU Zhen-Feng, ZHANG Li. Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China. Chinese Journal of Plant Ecology, 2022, 46(3): 330-339. DOI: 10.17521/cjpe.2021.0166
森林类型 Forest type | 海拔 Altitude (m) | 优势乔木 Dominant tree | 主要林下植物 Major understory species |
---|---|---|---|
针叶林 Coniferous forest | 3 000 | 岷江冷杉 Abies fargesii var. faxoniana | 茜草 Rubia cordifolia 高山冷蕨 Cystopteris montana 高山杜鹃 Rhododendron lapponicum |
针阔混交林 Mixed coniferous and broad-leaved forest | 2 985 | 岷江冷杉 Abies fargesii var. faxoniana 红桦 Betula albosinensis | 高山杜鹃 Rhododendron lapponicum 箭竹 Fargesia spathacea 高山冷蕨 Cystopteris montana |
阔叶林 Broad-leaved forest | 3 010 | 红桦 Betula albosinensis | 箭竹 Fargesia spathacea 蟹甲草 Parasenecio forrestii 高山冷蕨 Cystopteris montana |
表1 川西亚高山森林样地主要信息
Table 1 Basic information on sampling plots in subalpine forests of western Sichuan
森林类型 Forest type | 海拔 Altitude (m) | 优势乔木 Dominant tree | 主要林下植物 Major understory species |
---|---|---|---|
针叶林 Coniferous forest | 3 000 | 岷江冷杉 Abies fargesii var. faxoniana | 茜草 Rubia cordifolia 高山冷蕨 Cystopteris montana 高山杜鹃 Rhododendron lapponicum |
针阔混交林 Mixed coniferous and broad-leaved forest | 2 985 | 岷江冷杉 Abies fargesii var. faxoniana 红桦 Betula albosinensis | 高山杜鹃 Rhododendron lapponicum 箭竹 Fargesia spathacea 高山冷蕨 Cystopteris montana |
阔叶林 Broad-leaved forest | 3 010 | 红桦 Betula albosinensis | 箭竹 Fargesia spathacea 蟹甲草 Parasenecio forrestii 高山冷蕨 Cystopteris montana |
时间 Time (a) | 指标 Index | 土壤含水量 Soil water content (%) | 温度 Temperature (°C) | pH | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 全磷含量 Total phosphorus content (g·kg-1) |
---|---|---|---|---|---|---|---|
1 | BFI | 54.94 ± 3.41a | 10.56 ± 0.05a | 5.82 ± 0.14a | 161.70 ± 25.4a | 0.25 ± 0.08a | 0.89 ± 0.07a |
MFI | 41.75 ± 9.09a | 10.41 ± 0.30a | 5.08 ± 0.11b | 121.83 ± 21.55a | 0.17 ± 0.07a | 0.87 ± 0.05a | |
CFI | 55.61 ± 2.35a | 10.15 ± 0.06a | 4.76 ± 0.07b | 171.80 ± 20.08a | 0.28 ± 0.03a | 0.83 ± 0.05a | |
BFR | 45.86 ± 7.70a | 10.45 ± 0.04a | 5.48 ± 0.06a | 96.46 ± 43.51a | 0.21 ± 0.06a | 0.86 ± 0.10a | |
MFR | 53.82 ± 7.35a | 10.14 ± 0.15a | 5.50 ± 0.09a | 192.46 ± 44.59a | 0.30 ± 0.13a | 0.76 ± 0.06a | |
CFR | 54.96 ± 1.50a | 9.75 ± 0.06a | 5.10 ± 0.25a | 166.63 ± 12.94a | 0.27 ± 0.06a | 0.78 ± 0.04a | |
1.5 | BFI | 57.57 ± 2.10a | 5.00 ± 0.14a | 6.22 ± 0.14a | 186.73 ± 12.12b | 13.10 ± 1.59a | 0.76 ± 0.14a |
MFI | 57.59 ± 7.96a | 4.75 ± 0.11a | 5.37 ± 0.25a | 240.58 ± 18.48a | 11.36 ± 3.33a | 0.79 ± 0.05a | |
CFI | 50.79 ± 1.88a | 4.65 ± 0.07a | 5.68 ± 0.45a | 211.02 ± 6.00ab | 11.10 ± 2.62a | 0.63 ± 0.13a | |
BFR | 50.32 ± 3.02a | 4.70 ± 0.06a | 5.97 ± 0.35a | 116.24 ± 20.35a | 10.36 ± 0.84a | 0.74 ± 0.10a | |
MFR | 53.32 ± 5.71a | 4.65 ± 0.07a | 5.54 ± 0.27a | 177.99 ± 51.16a | 10.37 ± 3.13a | 0.83 ± 0.08a | |
CFR | 52.90 ± 4.42a | 4.56 ± 0.25a | 5.69 ± 0.24a | 228.29 ± 16.32a | 14.07 ± 1.11a | 0.71 ± 0.08a | |
2 | BFI | 53.40 ± 8.82a | 10.24 ± 0.21a | 5.86 ± 0.21a | 121.61 ± 41.60a | 8.18 ± 2.54a | 0.47 ± 0.11a |
MFI | 58.46 ± 5.45a | 9.13 ± 0.05a | 5.81 ± 0.05a | 156.81 ± 31.94a | 7.75 ± 1.55a | 0.41 ± 0.06a | |
CFI | 46.65 ± 3.35a | 9.09 ± 0.05a | 5.79 ± 0.05a | 99.19 ± 5.10a | 2.60 ± 1.19a | 0.22 ± 0.04a | |
BFR | 46.29 ± 3.96a | 9.86 ± 0.05a | 5.74 ± 0.05a | 84.60 ± 18.86a | 3.29 ± 1.09ab | 0.44 ± 0.05a | |
MFR | 48.75 ± 6.25a | 8.90 ± 0.12a | 5.91 ± 0.12a | 102.31 ± 21.54a | 5.25 ± 0.71a | 0.36 ± 0.04ab | |
CFR | 43.88 ± 0.75a | 9.10 ± 0.14a | 5.62 ± 0.14a | 106.16 ± 10.74a | 0.82 ± 0.13b | 0.26 ± 0.02b |
表2 凋落物处理下不同采样时期川西亚高山3种森林类型土壤基本理化指标(平均值±标准误)
Table 2 Soil physical and chemical variables at different measurement times for the three forest types under contrasting litter treatments in subalpine forests of western Sichuan (mean ± SE)
时间 Time (a) | 指标 Index | 土壤含水量 Soil water content (%) | 温度 Temperature (°C) | pH | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 全磷含量 Total phosphorus content (g·kg-1) |
---|---|---|---|---|---|---|---|
1 | BFI | 54.94 ± 3.41a | 10.56 ± 0.05a | 5.82 ± 0.14a | 161.70 ± 25.4a | 0.25 ± 0.08a | 0.89 ± 0.07a |
MFI | 41.75 ± 9.09a | 10.41 ± 0.30a | 5.08 ± 0.11b | 121.83 ± 21.55a | 0.17 ± 0.07a | 0.87 ± 0.05a | |
CFI | 55.61 ± 2.35a | 10.15 ± 0.06a | 4.76 ± 0.07b | 171.80 ± 20.08a | 0.28 ± 0.03a | 0.83 ± 0.05a | |
BFR | 45.86 ± 7.70a | 10.45 ± 0.04a | 5.48 ± 0.06a | 96.46 ± 43.51a | 0.21 ± 0.06a | 0.86 ± 0.10a | |
MFR | 53.82 ± 7.35a | 10.14 ± 0.15a | 5.50 ± 0.09a | 192.46 ± 44.59a | 0.30 ± 0.13a | 0.76 ± 0.06a | |
CFR | 54.96 ± 1.50a | 9.75 ± 0.06a | 5.10 ± 0.25a | 166.63 ± 12.94a | 0.27 ± 0.06a | 0.78 ± 0.04a | |
1.5 | BFI | 57.57 ± 2.10a | 5.00 ± 0.14a | 6.22 ± 0.14a | 186.73 ± 12.12b | 13.10 ± 1.59a | 0.76 ± 0.14a |
MFI | 57.59 ± 7.96a | 4.75 ± 0.11a | 5.37 ± 0.25a | 240.58 ± 18.48a | 11.36 ± 3.33a | 0.79 ± 0.05a | |
CFI | 50.79 ± 1.88a | 4.65 ± 0.07a | 5.68 ± 0.45a | 211.02 ± 6.00ab | 11.10 ± 2.62a | 0.63 ± 0.13a | |
BFR | 50.32 ± 3.02a | 4.70 ± 0.06a | 5.97 ± 0.35a | 116.24 ± 20.35a | 10.36 ± 0.84a | 0.74 ± 0.10a | |
MFR | 53.32 ± 5.71a | 4.65 ± 0.07a | 5.54 ± 0.27a | 177.99 ± 51.16a | 10.37 ± 3.13a | 0.83 ± 0.08a | |
CFR | 52.90 ± 4.42a | 4.56 ± 0.25a | 5.69 ± 0.24a | 228.29 ± 16.32a | 14.07 ± 1.11a | 0.71 ± 0.08a | |
2 | BFI | 53.40 ± 8.82a | 10.24 ± 0.21a | 5.86 ± 0.21a | 121.61 ± 41.60a | 8.18 ± 2.54a | 0.47 ± 0.11a |
MFI | 58.46 ± 5.45a | 9.13 ± 0.05a | 5.81 ± 0.05a | 156.81 ± 31.94a | 7.75 ± 1.55a | 0.41 ± 0.06a | |
CFI | 46.65 ± 3.35a | 9.09 ± 0.05a | 5.79 ± 0.05a | 99.19 ± 5.10a | 2.60 ± 1.19a | 0.22 ± 0.04a | |
BFR | 46.29 ± 3.96a | 9.86 ± 0.05a | 5.74 ± 0.05a | 84.60 ± 18.86a | 3.29 ± 1.09ab | 0.44 ± 0.05a | |
MFR | 48.75 ± 6.25a | 8.90 ± 0.12a | 5.91 ± 0.12a | 102.31 ± 21.54a | 5.25 ± 0.71a | 0.36 ± 0.04ab | |
CFR | 43.88 ± 0.75a | 9.10 ± 0.14a | 5.62 ± 0.14a | 106.16 ± 10.74a | 0.82 ± 0.13b | 0.26 ± 0.02b |
图1 川西亚高山3种林型凋落物自然输入与去除土壤的可提取腐殖质、胡敏酸和富里酸含量(平均值±标准误)。不同小写字母表示同一林型相同处理下不同采样时间土壤可提取腐殖质、胡敏酸和富里酸含量差异显著(p < 0.05)。*, 同一采样时间凋落物自然输入与凋落物去除之间差异显著(p < 0.05)。
Fig. 1 Soil extractable humic substances content, humic acid content and fulvic acid content as affected by litter input in broad-leaved forest, mixed coniferous and broad-leaved forest and coniferous forest in subalpine forests of western Sichuan (mean ± SE). Different lowercase letters indicate that the differences of extractable humic substances content, humic acid content and fulvic acid content between different measurement times within the same treatment are significant (p < 0.05). *, significant differences in soil humic substances content between litter treatments in the same measurement time (p < 0.05).
因子 Factor | 可提取腐殖质 EHS | 胡敏酸 HA | 富里酸 FA | 胡敏酸/富里酸 HA/FA | 胡敏酸/可提取腐殖质 PQ |
---|---|---|---|---|---|
凋落物 Litter | 11.571** | 0.827 | 5.659* | 2.745 | 0.098 |
培养时间 Time | 73.835** | 28.137** | 38.713** | 10.653** | 4.263* |
林型 Type | 10.808** | 31.479** | 15.783** | 5.963** | 19.403** |
凋落物×时间 Litter × Time | 15.654** | 19.443** | 8.544** | 2.142 | 2.054 |
凋落物×林型 Litter × Type | 3.328 | 9.650** | 3.853* | 5.657* | 10.340** |
时间×林型 Time × Type | 8.584** | 8.011** | 12.489** | 5.838** | 7.266** |
凋落物×时间×林型 Litter × Time × Type | 1.111 | 5.777** | 4.080** | 4.936** | 8.496** |
表3 凋落物、培养时间和林型对川西亚高山森林土壤可提取腐殖质、胡敏酸、富里酸含量、胡敏酸/富里酸及腐殖化度的三因素方差分析(F值)
Table 3 Results of three way ANOVA (F value) for testing the effects of litter, measurement time and forest type on soil extractable humic substances (EHS), humic acid (HA), fulvic acid (FA) content, and the ratios of humic acid/fulvic acid (HA/FA) and humic acid/extractable humic substances (PQ) in subalpine forests of western Sichuan
因子 Factor | 可提取腐殖质 EHS | 胡敏酸 HA | 富里酸 FA | 胡敏酸/富里酸 HA/FA | 胡敏酸/可提取腐殖质 PQ |
---|---|---|---|---|---|
凋落物 Litter | 11.571** | 0.827 | 5.659* | 2.745 | 0.098 |
培养时间 Time | 73.835** | 28.137** | 38.713** | 10.653** | 4.263* |
林型 Type | 10.808** | 31.479** | 15.783** | 5.963** | 19.403** |
凋落物×时间 Litter × Time | 15.654** | 19.443** | 8.544** | 2.142 | 2.054 |
凋落物×林型 Litter × Type | 3.328 | 9.650** | 3.853* | 5.657* | 10.340** |
时间×林型 Time × Type | 8.584** | 8.011** | 12.489** | 5.838** | 7.266** |
凋落物×时间×林型 Litter × Time × Type | 1.111 | 5.777** | 4.080** | 4.936** | 8.496** |
图2 川西亚高山3种林型凋落物自然输入与去除土壤的胡敏酸/富里酸(平均值±标准误)。不同小写字母表示同一林型相同处理下不同采样时间土壤胡敏酸/富里酸差异显著(p < 0.05)。*, 同一采样时间凋落物自然输入与凋落物去除之间差异显著(p < 0.05)。
Fig. 2 Humic acid/fulvic acid ratio as affected by litter input in broad-leaved forest, mixed coniferous and broad-leaved forest and coniferous forest in subalpine forests of western Sichuan (mean ± SE). Different lowercase letters indicate that the differences in humic acid/fulvic acid ratio between measurement times under given litter treatments are significant (p < 0.05). *, significant differences in humic acid/fulvic acid ratio between litter treatments in the same measurement time (p < 0.05).
图3 川西亚高山3种林型凋落物自然输入与去除土壤的胡敏酸/可提取腐殖质(平均值±标准误)。不同小写字母表示同一林型相同处理下不同采样时间土壤胡敏酸/可提取腐殖质差异显著(p < 0.05)。 *, 同一采样时间凋落物自然输入与凋落物去除之间差异显著(p < 0.05)。
Fig. 3 Humic acid/extractable humic substances ratio as affected by litter input in broad-leaved forest, mixed coniferous and broad-leaved forest and coniferous forest in subalpine forests of western Sichuan (mean ± SE). Different lowercase letters indicate that the differences in humic acid/extractable humic substances ratio between measurement times are significant (p < 0.05). *, significant differences in humic acid/extractable humic substances ratio between litter treatments in the same measurement time (p < 0.05).
指标 Index | 凋落物输入 Soil retained litter | 凋落物去除 Soil removed litter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
EHS | HA | FA | HA/FA | PQ | EHS | HA | FA | HA/FA | PQ | |
SWC | 0.157 | 0.223 | 0.089 | 0.168 | -0.021 | 0.564** | 0.355 | 0.472* | -0.389* | -0.018 |
pH | -0.122 | -0.213 | -0.068 | 0.023 | 0.025 | -0.194 | -0.139 | -0.154 | -0.004 | 0.179 |
TM | -0.493** | -0.547** | -0.338 | 0.005 | 0.007 | -0.512** | -0.432* | -0.370 | 0.062 | 0.015 |
SOC | 0.578** | 0.707** | 0.366 | 0.105 | 0.025 | 0.755** | 0.409* | 0.656** | -0.399* | -0.107 |
TN | 0.414* | 0.513** | 0.257 | 0.181 | -0.012 | 0.658** | 0.418* | 0.546** | -0.185 | -0.127 |
TP | 0.338 | 0.218 | 0.315 | -0.181 | -0.156 | 0.314 | 0.387* | 0.182 | 0.218 | -0.055 |
表4 川西亚高山森林不同凋落物处理下土壤腐殖质与土壤理化性质之间的相关性
Table 4 Correlations of soil humic substances with soil physical and chemical properties under different litter treatments in subalpine forests of western Sichuan
指标 Index | 凋落物输入 Soil retained litter | 凋落物去除 Soil removed litter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
EHS | HA | FA | HA/FA | PQ | EHS | HA | FA | HA/FA | PQ | |
SWC | 0.157 | 0.223 | 0.089 | 0.168 | -0.021 | 0.564** | 0.355 | 0.472* | -0.389* | -0.018 |
pH | -0.122 | -0.213 | -0.068 | 0.023 | 0.025 | -0.194 | -0.139 | -0.154 | -0.004 | 0.179 |
TM | -0.493** | -0.547** | -0.338 | 0.005 | 0.007 | -0.512** | -0.432* | -0.370 | 0.062 | 0.015 |
SOC | 0.578** | 0.707** | 0.366 | 0.105 | 0.025 | 0.755** | 0.409* | 0.656** | -0.399* | -0.107 |
TN | 0.414* | 0.513** | 0.257 | 0.181 | -0.012 | 0.658** | 0.418* | 0.546** | -0.185 | -0.127 |
TP | 0.338 | 0.218 | 0.315 | -0.181 | -0.156 | 0.314 | 0.387* | 0.182 | 0.218 | -0.055 |
[1] |
Bradford MA, Keiser AD, Davies CA, Mersmann CA, Strickland MS (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113, 271-281.
DOI URL |
[2] | Cai XB, Peng YL, Wei SZ, Yu BZ (2014). Variation of organic carbon and humus carbon in alpine steppe soil and functions of microorganisms therein. Acta Pedologica Sinica, 51, 834-844. |
[蔡晓布, 彭岳林, 魏素珍, 于宝政 (2014). 高寒草原土壤有机碳与腐殖质碳变化及其微生物效应. 土壤学报, 51, 834-844.] | |
[3] |
Chang EH, Chen TH, Tian GL, Hsu CK, Chiu CY (2016). Effect of 40 and 80 years of conifer regrowth on soil microbial activities and community structure in subtropical low mountain forests. Forests, 7, 244. DOI: 10.3390/f7100244.
DOI URL |
[4] | Chen J, Liu S, Shi ZM, Zhao GD (2021). Effects of three forest restoration pathways on soil biologically based phosphorus in the subalpine of western Sichuan. Acta Ecologica Sinica, 41, 2698-2708. |
[陈健, 刘顺, 史作民, 赵广东 (2021). 川西亚高山三种森林恢复途径对土壤生物有效磷的影响. 生态学报, 41, 2698-2708.] | |
[5] | Chen ZH, Zhang XR, Tan B, Wei XY, Chen Y, Yang YL, Wu QG, Zhang L (2020). Effects of the freeze-thaw cycle on soil enzyme activities in a sub-alpine forest in western Sichuan. Acta Ecologica Sinica, 40, 2662-2669. |
[陈子豪, 张晓蓉, 谭波, 卫芯宇, 谌亚, 杨玉莲, 吴庆贵, 张丽 (2020). 冻融循环对川西亚高山森林土壤酶活性的影响. 生态学报, 40, 2662-2669.] | |
[6] | Chu H, Zong LG, Wang ZY, Xie SH, Yang N, Luo M (2013). Dynamic changes in humus composition in vegetable soils different in cultivation mode. Acta Pedologica Sinica, 50, 931-939. |
[褚慧, 宗良纲, 汪张懿, 谢少华, 杨旎, 罗敏 (2013). 不同种植模式下菜地土壤腐殖质组分特性的动态变化. 土壤学报, 50, 931-939.] | |
[7] | Cong G, Zhang ZD, Zhang JJ, Xu L, He NP (2019). Research on characteristics of soil organic carbon in different forest types in Changbai Mountain. Journal of Soil and Water Conservation, 33(3), 179-184. |
[丛高, 张志丹, 张晋京, 徐丽, 何念鹏 (2019). 长白山不同林型土壤有机碳特征. 水土保持学报, 33(3), 179-184.] | |
[8] |
Dang YA, Li SQ, Wang GD (2012). Distribution characteristics of humus fraction in soil profile for the typical regions in the Loess Plateau. Acta Ecologica Sinica, 32, 1820-1829.
DOI URL |
[党亚爱, 李世清, 王国栋 (2012). 黄土高原典型区域土壤腐殖酸组分剖面分布特征. 生态学报, 32, 1820-1829.] | |
[9] | Deng RJ, Yang WQ, Zhang J, Wu FZ (2010). Changes in litter quality of subalpine forests during one freeze-thaw season. Acta Ecologica Sinica, 30, 830-835. |
[邓仁菊, 杨万勤, 张健, 吴福忠 (2010). 季节性冻融期间亚高山森林凋落物的质量变化. 生态学报, 30, 830-835.] | |
[10] | Dou S, Tardy Y, Zhang JJ, Li K, Yu SQ, Ping LF, Guan S, Hou SY, Lin XW, Gao X (2010). Thermodynamic stability of humic acid and fulvic acid in soil and its driving factors. Acta Pedologica Sinica, 47, 71-76. |
[窦森, Yves Tardy, 张晋京, 李凯, 于水强, 平立凤, 关松, 候素艳, 林学巍, 高娴 (2010). 土壤胡敏酸与富里酸热力学稳定性及其驱动因素初步研究. 土壤学报, 47, 71-76.] | |
[11] | Gao ZH, Wei HJ, Li YC, Zhang XS, Wang N (2017). Relationships between humus and cadmium speciation of reclaimed soil under various vegetation. Bulletin of Soil and Water Conservation, 37(5), 103-109. |
[高兆慧, 魏怀建, 李玉成, 张学胜, 王宁 (2017). 不同植被下复垦土壤腐殖质与Cd形态的关系. 水土保持通报, 37(5), 103-109.] | |
[12] |
Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001). Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56, 191-213.
DOI URL |
[13] | Jia PL, An SS, Li CC, Zeng QC, Wang BR, Bai XJ (2020). Dynamics of soil nutrients and their ecological stoichiometry characteristics under different longitudes in the east-west forest belt of the Loess Plateau. Journal of Soil and Water Conservation, 34, 315-321. |
[贾培龙, 安韶山, 李程程, 曾全超, 王宝荣, 白雪娟 (2020). 黄土高原森林带土壤养分和微生物量及其生态化学计量变化特征. 水土保持学报, 34, 315-321.] | |
[14] | Jia SH, Wang WW, Zhang RS (2017). Distribution characteristics of soil organic carbon and humus composition in different forest types. Journal of Soil and Water Conservation, 31(6), 189-195. |
[贾树海, 王薇薇, 张日升 (2017). 不同林型土壤有机碳及腐殖质组成的分布特征. 水土保持学报, 31(6), 189-195.] | |
[15] | Jiao ZB, Li YQ, Chen ZH, Liu Y, Yang YT, Mu QP, Tan B, Xu ZF, Li H, Zhang L (2021). Response of soil enzyme activities to short-term litter input in different types of forest in subalpine western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 608-616. |
[焦泽彬, 李羿桥, 陈子豪, 刘谣, 杨玉婷, 母秋坪, 谭波, 徐振锋, 李晗, 张丽 (2021). 川西亚高山不同森林类型土壤酶活性对短期凋落物输入量变化的响应. 应用与环境生物学报, 27, 608-616.] | |
[16] |
Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371.
DOI URL |
[17] |
Li X, Wang F, Cao Y, Peng SZ, Chen YM (2017). Soil carbon storage and its determinants in the forests of Shaanxi Province, China. Chinese Journal of Plant Ecology, 41, 953-963.
DOI URL |
[李茜, 王芳, 曹扬, 彭守璋, 陈云明 (2017). 陕西省森林土壤固碳特征及其影响因素. 植物生态学报, 41, 953-963.]
DOI |
|
[18] |
Liljeroth E, Kuikman P, van Veen JA, (1994). Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil, 161, 233-240.
DOI URL |
[19] |
Lipczynska-Kochany E (2018). Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: a review. Chemosphere, 202, 420-437.
DOI PMID |
[20] | Liu Q, Zhuang LY, Yang WQ, Li TT, Tan B, Zhang L, Xu ZF (2017). Humification characteristics of different root diameters of two dominant subalpine tree species in western Sichuan. Chinese Journal of Applied and Environmental Biology, 23, 665-669. |
[刘群, 庄丽燕, 杨万勤, 李婷婷, 谭波, 张丽, 徐振锋 (2017). 川西亚高山森林两种优势树种不同径级根系腐殖化特征. 应用与环境生物学报, 23, 665-669.] | |
[21] | Liu T, Sun SQ, Qiu Y (2017). Dynamics and differences in the decomposition of litters from three dominating plants in subalpine ecosystems in western Sichuan, China. Mountain Research, 35, 663-668. |
[刘涛, 孙守琴, 邱阳 (2017). 川西亚高山生态系统三种典型植物凋落物分解动态特征. 山地学报, 35, 663-668.] | |
[22] | Liu YH, Pei HK (2004). Study on composition and characteristics of soil humus under alpine-arctic meadow vegetation. Chinese Journal of Soil Science, 35, 562-565. |
[刘育红, 裴海昆 (2004). 高寒草甸植被土壤腐殖质组成及性质的研究. 土壤通报, 35, 562-565.] | |
[23] | Lu RK (1999). Analytical Methods of Soil Agricultural Chemistry. China Agricultural Science Press, Beijing. |
[鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科学技术出版社, 北京.] | |
[24] |
Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G (2014). Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biology & Biochemistry, 75, 273-281.
DOI URL |
[25] |
Neumann M, Ukonmaanaho L, Johnson J, Benham S, Vesterdal L, Novotný R, Verstraeten A, Lundin L, Thimonier A, Michopoulos P, Hasenauer H (2018). Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling. Global Biogeochemical Cycles, 32, 784-798.
DOI URL |
[26] |
Ni XY, Yang WQ, Liao S, Li H, Tan B, Yue K, Xu ZF, Zhang L, Wu FZ (2018). Rapid release of labile components limits the accumulation of humic substances in decomposing litter in an alpine forest. Ecosphere, 9, e02434. DOI: 10.1002/ecs2.2434.
DOI URL |
[27] | Ni XY, Yang WQ, Tan B, He J, Xu LY, Li H, Wu FZ (2015). Accelerated foliar litter humification in forest gaps: dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest. Geoderma, 241-242, 136-144. |
[28] |
Ni XY, Yang WQ, Tan B, Li H, He J, Xu LY, Wu FZ (2016). Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest. Scientific Reports, 6, 19744. DOI: 10.1038/srep19744.
DOI URL |
[29] |
Pédrot M, Dia A, Davranche M (2010). Dynamic structure of humic substances: rare earth elements as a fingerprint. Journal of Colloid and Interface Science, 345, 206-213.
DOI URL |
[30] | Piccolo A (2002). The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57-134. |
[31] | Poage MA, Feng X (2004). A theoretical analysis of steady state δ13C profiles of soil organic matter. Global Biogeochemical Cycles, 18, 2016-2028. |
[32] |
Prescott CE, Maynard DG, Laiho R (2000). Humus in northern forests: friend or foe? Forest Ecology and Management, 133, 23-36.
DOI URL |
[33] |
Serudo RL, de Oliveira LC, Rocha JC, Paterlini WC, Rosa AH, da Silva HC, Botero WG (2007). Reduction capability of soil humic substances from the Rio Negro Basin, Brazil, towards Hg (II) studied by a multimethod approach and principal component analysis (PCA). Geoderma, 138, 229-236.
DOI URL |
[34] | Shi K, Xia X, Guan Q, Shen FY, Huang QR, Li DM, Liu MQ, Li HX, Hu F, Jiao JG (2016). Changes of dissolved organic carbon in paddy soils with different levels of carbon amended with exogenous organic matter based on fluorescence spectrum analysis. Journal of Soil and Water Conservation, 30(3), 227-233. |
[石坤, 夏昕, 关强, 沈方圆, 黄欠如, 李大明, 刘满强, 李辉信, 胡锋, 焦加国 (2016). 基于荧光分析的不同有机碳水平水稻土添加外源有机物培养对DOC的影响. 水土保持学报, 30(3), 227-233.] | |
[35] | Tan Y, Yang WQ, Liao S, Peng Y, Li J, Wu FZ (2017). Effects of soil fauna on winter litter humification along an altitudinal gradient in cold ecosystems in western Sichuan. Acta Ecologica Sinica, 37, 1595-1602. |
[谭羽, 杨万勤, 廖姝, 彭艳, 李俊, 吴福忠 (2017). 川西高寒生态系统不同海拔土壤动物对冬季凋落叶腐殖化过程的影响. 生态学报, 37, 1595-1602.] | |
[36] | Wan X (2012). Soil Humus Characteristics of Typical Flue-cured Tobacco Production Regions and Its Effect on Tobacco Leaf Quality. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing. |
[宛祥 (2012). 典型烤烟产区土壤腐殖质特征及其对烟叶品质的影响. 硕士学位论文, 中国农业科学院, 北京.] | |
[37] | Wang CD, Xu YM, Ma XH, Liu GL, Qu XL, Li DY, Zeng QB, Wang SS (2019). Humus composition of topsoil in quality flue-cured tobacco producing region in China. Acta Pedologica Sinica, 56, 919-928. |
[王程栋, 徐宜民, 马兴华, 刘光亮, 曲潇玲, 李东阳, 曾庆宾, 王树声 (2019). 中国优质烤烟产区耕层土壤腐殖质组分特征. 土壤学报, 56, 919-928.] | |
[38] | Wang HC, Tian GL, Chen CP, Chang EH, Chou CY, Chiou CR, Chiu CY (2019). Response of humic acids and soil organic matter to vegetation replacement in subtropical high mountain forests. Journal of Geophysical Research, 124, 3727-3736. |
[39] | Wang W, Wu JG, Li YH, Li JM, Zhao XY, Qu XJ, Hu J (2017). Effects of organic materials on the composition and structure of humic substance in the rhizosphere soil of different crops. Journal of Soil and Water Conservation, 31(2), 215-220. |
[王维, 吴景贵, 李蕴慧, 李建明, 赵欣宇, 曲晓晶, 胡娟 (2017). 有机物料对不同作物根系土壤腐殖质组成和结构的影响. 水土保持学报, 31(2), 215-220.] | |
[40] | Wang X (2010). Effects of different management mode of artificial Pinus tabulaeformis forest on the characteristics and binding forms of humus in Ziwuling Mountain. Journal of Soil and Water Conservation, 24(2), 232-236. |
[王鑫 (2010). 子午岭人工油松林不同管理方式对土壤腐殖质性质及结合形态的影响. 水土保持学报, 24(2), 232-236.] | |
[41] | Wei XY, Yang WQ, Zhang L, Tan B, Chen Y, Dong YL, Wu FZ (2018). Effects of litter addition on soil humification during freeze-thaw cycles in a subalpine forest. Acta Ecologica Sinica, 38, 6521-6529. |
[卫芯宇, 杨万勤, 张丽, 谭波, 谌亚, 董玉梁, 吴福忠 (2018). 冻融环境下凋落叶添加对亚高山森林土壤腐殖化程度的影响. 生态学报, 38, 6521-6529.] | |
[42] |
Wei XY, Yang YL, Shen Y, Chen ZH, Dong YL, Wu FZ, Zhang L (2020). Effects of litterfall on the accumulation of extracted soil humic substances in subalpine forests. Frontiers in Plant Science, 11, 254. DOI: 10.3389/fpls.2020.00254.
DOI URL |
[43] | Xu XZ, Xue JH, Yin JR (2006). Studies on humus fractions from different soil. Jiangsu Environmental Science and Technology, 19(Suppl.2), 7-9. |
[徐小忠, 薛锦华, 印军荣 (2006). 不同类型土壤腐殖质组分的研究. 江苏环境科技, 19(增2), 7-9.] | |
[44] | Yang WQ, Zhang J, Hu TX, Sun H (2006). Forest Soil Ecology. Sichuan Science and technology Press, Chengdu. |
[杨万勤, 张健, 胡庭兴, 孙辉 (2006). 森林土壤生态学. 四川科学技术出版社, 成都.] | |
[45] |
Zanella A, Berg B, Ponge JF, Kemmers RH (2018a). Humusica 1, article 2: Essential bases—Functional considerations. Applied Soil Ecology, 122, 22-41.
DOI URL |
[46] |
Zanella A, Ponge JF, Matteodo M (2018b). Humusica 1, article 7: Terrestrial humus systems and forms—Field practice and sampling problems. Applied Soil Ecology, 122, 92-102.
DOI URL |
[47] | Zhang JJ, Dou S (2008). Advances in soil humin research. Acta Ecologica Sinica, 28, 1229-1239. |
[张晋京, 窦森 (2008). 土壤胡敏素研究进展. 生态学报, 28, 1229-1239.] | |
[48] | Zhang JY, Li C, Zeng HP, Hu ML, Dong DC (2019). Distribution characteristics of humus in purple soil profile under different vegetation types. Bulletin of Soil and Water Conservation, 39(5), 85-91. |
[张健瑜, 李灿, 曾和平, 胡梦淩, 董达诚 (2019). 不同植被类型紫色土腐殖质的剖面分布特征. 水土保持通报, 39(5), 85-91.] | |
[49] | Zhang RS, Jia SH, Wang WW (2020). Variation characteristics of the composition of soil organic carbon and humus carbon in Pinus sylvestris var. mongolica plantations. Liaoning Agricultural Sciences, (4), 1-6. |
[张日升, 贾树海, 王薇薇 (2020). 樟子松人工林土壤有机碳及腐殖质碳组成的变化特征. 辽宁农业科学, (4), 1-6.] | |
[50] | Zheng YY, Zhang JB, Tan J, Zhang CZ, Yu ZH (2019). Chemical composition and structure of humus relative to sources. Acta Pedologica Sinica, 56, 386-397. |
[郑延云, 张佳宝, 谭钧, 张丛志, 余正洪 (2019). 不同来源腐殖质的化学组成与结构特征研究. 土壤学报, 56, 386-397.] | |
[51] | Zhou H, He H, Xiao M, He ZJ (2021). Composition of humus in forest soils of Yunnan Province, China and its influencing factors. Acta Pedologica Sinica, 58, 1008-1017. |
[周红, 何欢, 肖蒙, 何忠俊 (2021). 云南省森林土壤腐殖质组分特征及影响因素. 土壤学报, 58, 1008-1017.] |
[1] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[2] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[3] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[4] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[5] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[8] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[9] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[10] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[11] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[12] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[13] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[14] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[15] | 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19