植物生态学报 ›› 2022, Vol. 46 ›› Issue (3): 267-279.DOI: 10.17521/cjpe.2021.0350
江蓝1, 魏晨思1, 何中声1,*(), 朱静1, 邢聪1, 王雪琳1, 刘金福1, 沈彩霞2, 施友文3
收稿日期:
2021-10-04
接受日期:
2022-01-14
出版日期:
2022-03-20
发布日期:
2022-01-24
通讯作者:
何中声 ORCID: 0000-0002-7031-7340
作者简介:
* (jxhzs85@fafu.edu.cn)
基金资助:
JIANG Lan1, WEI Chen-Si1, HE Zhong-Sheng1,*(), ZHU Jing1, XING Cong1, WANG Xue-Lin1, LIU Jin-Fu1, SHEN Cai-Xia2, SHI You-Wen3
Received:
2021-10-04
Accepted:
2022-01-14
Online:
2022-03-20
Published:
2022-01-24
Contact:
HE Zhong-Sheng
Supported by:
摘要:
林窗是森林更新演替的重要环节, 揭示林窗环境下功能性状变异来源及其相对贡献, 有助于阐明植物对林窗环境的响应。该研究以中亚热带格氏栲(Castanopsis kawakamii)天然林为对象, 设置9个不同大小的林窗样地, 运用方差分解探讨林窗、物种和个体对叶性状变异的相对贡献, 采用线性回归分析不同大小林窗下群落性状变化及种间和种内性状变异的重要性。研究发现: (1)格氏栲天然林林窗植物比叶面积、叶干物质含量、叶厚和叶绿素含量由种间性状变异主导, 叶氮含量由种内性状变异主导, 叶磷含量受林窗大小影响最大。(2)群落叶磷含量与林窗大小具有显著正相关关系, 土壤温度和水解氮含量对群落叶磷含量具有显著正效应, 土壤有效磷含量具有显著负效应。(3)沿林冠开放度的群落叶磷含量变化主要由种内性状变异引起, 优势种扮演着重要角色。结果表明, 格氏栲天然林林窗环境下植物功能性状仍以种间性状变异为主(平均41%), 但沿林窗环境梯度的群落性状变化主要源自种内性状变异, 通过植物表型可塑性响应环境改变, 优势种作用明显。
江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异. 植物生态学报, 2022, 46(3): 267-279. DOI: 10.17521/cjpe.2021.0350
JIANG Lan, WEI Chen-Si, HE Zhong-Sheng, ZHU Jing, XING Cong, WANG Xue-Lin, LIU Jin-Fu, SHEN Cai-Xia, SHI You-Wen. Functional trait variation of plant communities in canopy gaps of Castanopsis kawakamii natural forest. Chinese Journal of Plant Ecology, 2022, 46(3): 267-279. DOI: 10.17521/cjpe.2021.0350
林窗编号 Gap number | 林窗面积 Gap area (m2) | 林冠开放度 Canopy openness (%) | 海拔 Altitude (m) | 物种数 Species number | 主要树种 Dominate species |
---|---|---|---|---|---|
L1 | 210.56 | 31.96 | 224 | 24 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 狗骨柴 Diplospora dubia |
L2 | 200.38 | 23.92 | 211 | 18 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 木荷 Schima superba |
L3 | 207.57 | 29.91 | 214 | 22 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 新木姜子 Neolitsea aurata |
M1 | 74.22 | 17.34 | 196 | 11 | 格氏栲 Castanopsis kawakamii 黄绒润楠 Machilus grijsii 木荷 Schima superba |
M2 | 70.59 | 11.56 | 214 | 18 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 光叶山矾 Symplocos lancifolia |
M3 | 74.65 | 19.21 | 188 | 13 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 狗骨柴 Diplospora dubia |
S1 | 32.11 | 7.45 | 225 | 16 | 桂北木姜子 Litsea subcoriacea 黄绒润楠 Machilus grijsii 茜树 Aidia cochinchinensis |
S2 | 31.59 | 7.32 | 203 | 10 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 木荷 Schima superba |
S3 | 36.78 | 8.32 | 214 | 19 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 榕叶冬青 Ilex ficoidea |
表1 格氏栲天然林林窗基本概况
Table 1 General information about canopy gaps in the Castanopsis kawakamii natural forest
林窗编号 Gap number | 林窗面积 Gap area (m2) | 林冠开放度 Canopy openness (%) | 海拔 Altitude (m) | 物种数 Species number | 主要树种 Dominate species |
---|---|---|---|---|---|
L1 | 210.56 | 31.96 | 224 | 24 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 狗骨柴 Diplospora dubia |
L2 | 200.38 | 23.92 | 211 | 18 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 木荷 Schima superba |
L3 | 207.57 | 29.91 | 214 | 22 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 新木姜子 Neolitsea aurata |
M1 | 74.22 | 17.34 | 196 | 11 | 格氏栲 Castanopsis kawakamii 黄绒润楠 Machilus grijsii 木荷 Schima superba |
M2 | 70.59 | 11.56 | 214 | 18 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 光叶山矾 Symplocos lancifolia |
M3 | 74.65 | 19.21 | 188 | 13 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 狗骨柴 Diplospora dubia |
S1 | 32.11 | 7.45 | 225 | 16 | 桂北木姜子 Litsea subcoriacea 黄绒润楠 Machilus grijsii 茜树 Aidia cochinchinensis |
S2 | 31.59 | 7.32 | 203 | 10 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 木荷 Schima superba |
S3 | 36.78 | 8.32 | 214 | 19 | 格氏栲 Castanopsis kawakamii 桂北木姜子 Litsea subcoriacea 榕叶冬青 Ilex ficoidea |
图2 物种平均性状值与种群平均性状值概念示意图(参考Jung et al., 2010)。图中粗实线方框代表一个群落或样方, 某一物种的种群平均性状值是群落内该种群不同个体的性状平均值, 即图中实线椭圆形所示部分。某一物种的物种平均性状值为分布于所有群落的所有个体的性状均值, 即图中虚线矩形所示部分。
Fig. 2 Conceptual illustration of species mean trait and population mean trait (developed based on Jung et al., 2010). The thick solid rectangle represents a community or plot. The population mean trait value of a species is the average of different individual trait values in the plot, as shown by solid ellipse. The species mean trait value is the average of all individual trait values distributed in all plots, as shown by the dotted rectangle.
物种 Species | 种内性状变异系数 Coefficient of variation of intraspecific functional traits | |||||
---|---|---|---|---|---|---|
SLA | LDMC | Chl | LT | LNC | LPC | |
八角枫 Alangium chinense | - | - | - | - | - | - |
白花苦灯笼 Tarenna mollissima | 0.22 | 0.37 | 0.03 | 0.26 | 0.34 | 0.23 |
赤楠 Syzygium buxifolium | 0.04 | 0.23 | 0.05 | 0.16 | 0.21 | 0.44 |
冬青 Ilex chinensis | 0.07 | 0.13 | 0.02 | 0.09 | 0.13 | 0.21 |
短尾越桔 Vaccinium carlesii | 0.02 | 0.72 | 0.04 | 0.16 | 0.40 | 0.44 |
格氏栲 Castanopsis kawakamii | 0.04 | 0.66 | 0.75 | 0.61 | 0.71 | 0.72 |
狗骨柴 Diplospora dubia | 0.03 | 0.71 | 0.85 | 0.76 | 0.73 | 0.84 |
光叶山矾 Symplocos lancifolia | 0.04 | 0.23 | 0.03 | 0.08 | 0.10 | 0.37 |
广东冬青 Ilex kwangtungensis | 0.01 | 0.58 | 0.04 | 0.10 | 0.24 | 0.01 |
桂北木姜子 Litsea subcoriacea | 0.03 | 0.81 | 0.93 | 0.79 | 0.76 | 1.09 |
褐毛石楠 Photinia hirsuta | 0.01 | 0.10 | 0.04 | 0.08 | 0.12 | 0.62 |
红皮糙果茶 Camellia crapnelliana | 0.08 | 0.14 | 0.01 | 0.04 | 0.04 | 0.39 |
虎皮楠 Daphniphyllum oldhami | 0.04 | 0.57 | 0.68 | 0.54 | 0.63 | 0.69 |
华南桂 Cinnamomum austrosinense | 0.03 | 0.39 | 0.02 | 0.05 | 0.20 | 0.44 |
黄绒润楠 Machilus grijsii | 0.10 | 0.55 | 0.60 | 0.48 | 0.48 | 0.90 |
幌伞枫 Heteropanax fragrans | 0.05 | 0.15 | 0.01 | 0.42 | 0.04 | 0.01 |
矩叶鼠刺 Itea oblonga | 0.03 | 0.15 | 0.01 | 0.08 | 0.11 | 0.29 |
罗浮栲 Castanopsis faberi | - | - | - | - | - | - |
罗浮柿 Diospyros morrisiana | 0.16 | 0.36 | 0.00 | 0.27 | 0.23 | 0.59 |
毛冬青 Ilex pubescens | 0.04 | 0.30 | 0.03 | 0.17 | 0.26 | 0.41 |
米槠 Castanopsis carlesii | 0.03 | 0.11 | 0.03 | 0.07 | 0.03 | 0.16 |
闽楠 Phoebe bournei | 0.00 | 0.12 | 0.01 | 0.03 | 0.08 | 0.13 |
木荷 Schima superba | 0.06 | 0.12 | 0.02 | 0.13 | 0.12 | 0.54 |
木姜叶柯 Lithocarpus litseifolius | 0.01 | 0.20 | 0.00 | 0.03 | 0.54 | 0.31 |
茜树 Aidia cochinchinensis | 0.09 | 0.37 | 0.01 | 0.11 | 0.09 | 0.30 |
日本杜英 Elaeocarpus japonicus | 0.05 | 0.35 | 0.38 | 0.35 | 0.46 | 0.61 |
绒毛山胡椒 Lindera nacusua | - | - | - | - | - | - |
榕叶冬青 Ilex ficoidea | 0.00 | 0.49 | 0.01 | 0.13 | 0.02 | 0.14 |
山鸡椒 Litsea cubeba | - | - | - | - | - | |
山杜英 Elaeocarpus sylvestris | 0.06 | 0.18 | 0.03 | 0.06 | 0.51 | 0.07 |
山矾 Symplocos sumuntia | 0.02 | 0.06 | 0.02 | 0.08 | 0.18 | 0.42 |
千里香 Murraya paniculata | 0.04 | 0.30 | 0.03 | 0.08 | 0.22 | 0.16 |
石斑木 Rhaphiolepis indica | - | - | - | - | - | - |
石楠 Photinia serrulata | - | - | - | - | - | - |
树参 Dendropanax dentiger | - | - | - | - | - | - |
光亮山矾 Symplocos lucida | - | - | - | - | - | - |
酸味子 Antidesma japonicum | 0.13 | 0.20 | 0.04 | 0.27 | 0.11 | 0.55 |
台湾冬青 Ilex formosana | - | - | - | - | - | - |
甜槠 Castanopsis eyrei | - | - | - | - | - | - |
细枝柃 Eurya loquaiana | 0.06 | 0.07 | 0.02 | 0.19 | 0.06 | 0.57 |
香港新木姜子 Neolitsea cambodiana var. glabra | 0.02 | 0.17 | 0.02 | 0.07 | 0.06 | 0.54 |
香叶树 Lindera communis | - | - | - | - | - | - |
小叶蚊母树 Distylium buxifolium | - | - | - | - | - | - |
新木姜子 Neolitsea aurata | 0.02 | 0.13 | 0.01 | 0.08 | 0.07 | 0.31 |
杨桐 Adinandra millettii | - | - | - | - | - | - |
野含笑 Michelia skinneriana | - | - | - | - | - | - |
油茶 Camellia oleifera | 0.03 | 0.07 | 0.02 | 0.12 | 0.10 | 0.46 |
种间性状变异 Coefficient of variation of interspecific functional traits | 0.08 | 0.25 | 0.04 | 0.16 | 0.13 | 0.28 |
平均种内性状变异 Mean coefficient of variation of intraspecific functional trait | 0.05 | 0.31 | 0.14 | 0.21 | 0.25 | 0.42 |
表2 格氏栲天然林林窗环境下植物种间与种内性状变异系数
Table 2 Coefficient of variation of inter- and intraspecific functional traits in canopy gaps of the Castanopsis kawakamii natural forest
物种 Species | 种内性状变异系数 Coefficient of variation of intraspecific functional traits | |||||
---|---|---|---|---|---|---|
SLA | LDMC | Chl | LT | LNC | LPC | |
八角枫 Alangium chinense | - | - | - | - | - | - |
白花苦灯笼 Tarenna mollissima | 0.22 | 0.37 | 0.03 | 0.26 | 0.34 | 0.23 |
赤楠 Syzygium buxifolium | 0.04 | 0.23 | 0.05 | 0.16 | 0.21 | 0.44 |
冬青 Ilex chinensis | 0.07 | 0.13 | 0.02 | 0.09 | 0.13 | 0.21 |
短尾越桔 Vaccinium carlesii | 0.02 | 0.72 | 0.04 | 0.16 | 0.40 | 0.44 |
格氏栲 Castanopsis kawakamii | 0.04 | 0.66 | 0.75 | 0.61 | 0.71 | 0.72 |
狗骨柴 Diplospora dubia | 0.03 | 0.71 | 0.85 | 0.76 | 0.73 | 0.84 |
光叶山矾 Symplocos lancifolia | 0.04 | 0.23 | 0.03 | 0.08 | 0.10 | 0.37 |
广东冬青 Ilex kwangtungensis | 0.01 | 0.58 | 0.04 | 0.10 | 0.24 | 0.01 |
桂北木姜子 Litsea subcoriacea | 0.03 | 0.81 | 0.93 | 0.79 | 0.76 | 1.09 |
褐毛石楠 Photinia hirsuta | 0.01 | 0.10 | 0.04 | 0.08 | 0.12 | 0.62 |
红皮糙果茶 Camellia crapnelliana | 0.08 | 0.14 | 0.01 | 0.04 | 0.04 | 0.39 |
虎皮楠 Daphniphyllum oldhami | 0.04 | 0.57 | 0.68 | 0.54 | 0.63 | 0.69 |
华南桂 Cinnamomum austrosinense | 0.03 | 0.39 | 0.02 | 0.05 | 0.20 | 0.44 |
黄绒润楠 Machilus grijsii | 0.10 | 0.55 | 0.60 | 0.48 | 0.48 | 0.90 |
幌伞枫 Heteropanax fragrans | 0.05 | 0.15 | 0.01 | 0.42 | 0.04 | 0.01 |
矩叶鼠刺 Itea oblonga | 0.03 | 0.15 | 0.01 | 0.08 | 0.11 | 0.29 |
罗浮栲 Castanopsis faberi | - | - | - | - | - | - |
罗浮柿 Diospyros morrisiana | 0.16 | 0.36 | 0.00 | 0.27 | 0.23 | 0.59 |
毛冬青 Ilex pubescens | 0.04 | 0.30 | 0.03 | 0.17 | 0.26 | 0.41 |
米槠 Castanopsis carlesii | 0.03 | 0.11 | 0.03 | 0.07 | 0.03 | 0.16 |
闽楠 Phoebe bournei | 0.00 | 0.12 | 0.01 | 0.03 | 0.08 | 0.13 |
木荷 Schima superba | 0.06 | 0.12 | 0.02 | 0.13 | 0.12 | 0.54 |
木姜叶柯 Lithocarpus litseifolius | 0.01 | 0.20 | 0.00 | 0.03 | 0.54 | 0.31 |
茜树 Aidia cochinchinensis | 0.09 | 0.37 | 0.01 | 0.11 | 0.09 | 0.30 |
日本杜英 Elaeocarpus japonicus | 0.05 | 0.35 | 0.38 | 0.35 | 0.46 | 0.61 |
绒毛山胡椒 Lindera nacusua | - | - | - | - | - | - |
榕叶冬青 Ilex ficoidea | 0.00 | 0.49 | 0.01 | 0.13 | 0.02 | 0.14 |
山鸡椒 Litsea cubeba | - | - | - | - | - | |
山杜英 Elaeocarpus sylvestris | 0.06 | 0.18 | 0.03 | 0.06 | 0.51 | 0.07 |
山矾 Symplocos sumuntia | 0.02 | 0.06 | 0.02 | 0.08 | 0.18 | 0.42 |
千里香 Murraya paniculata | 0.04 | 0.30 | 0.03 | 0.08 | 0.22 | 0.16 |
石斑木 Rhaphiolepis indica | - | - | - | - | - | - |
石楠 Photinia serrulata | - | - | - | - | - | - |
树参 Dendropanax dentiger | - | - | - | - | - | - |
光亮山矾 Symplocos lucida | - | - | - | - | - | - |
酸味子 Antidesma japonicum | 0.13 | 0.20 | 0.04 | 0.27 | 0.11 | 0.55 |
台湾冬青 Ilex formosana | - | - | - | - | - | - |
甜槠 Castanopsis eyrei | - | - | - | - | - | - |
细枝柃 Eurya loquaiana | 0.06 | 0.07 | 0.02 | 0.19 | 0.06 | 0.57 |
香港新木姜子 Neolitsea cambodiana var. glabra | 0.02 | 0.17 | 0.02 | 0.07 | 0.06 | 0.54 |
香叶树 Lindera communis | - | - | - | - | - | - |
小叶蚊母树 Distylium buxifolium | - | - | - | - | - | - |
新木姜子 Neolitsea aurata | 0.02 | 0.13 | 0.01 | 0.08 | 0.07 | 0.31 |
杨桐 Adinandra millettii | - | - | - | - | - | - |
野含笑 Michelia skinneriana | - | - | - | - | - | - |
油茶 Camellia oleifera | 0.03 | 0.07 | 0.02 | 0.12 | 0.10 | 0.46 |
种间性状变异 Coefficient of variation of interspecific functional traits | 0.08 | 0.25 | 0.04 | 0.16 | 0.13 | 0.28 |
平均种内性状变异 Mean coefficient of variation of intraspecific functional trait | 0.05 | 0.31 | 0.14 | 0.21 | 0.25 | 0.42 |
图3 格氏栲天然林林窗环境下植物功能性状变异来源分析。变异主要来源于嵌套的3个部分, 分别为林窗、物种和个体。图中数值为对应的方差解释量, 解释量越高, 表明该因素对性状变异的影响越大。Chl、LDMC、LNC、LPC、LT和SLA分别为叶绿素含量、叶干物质含量、叶氮含量、叶磷含量、叶厚和比叶面积。
Fig. 3 The variation partitioning of plant functional traits under canopy gaps in the Castanopsis kawakamii natural forest. The variation mainly comes from three nested parts, namely gap, species and individual. The value in the figure is the explanatory variance. The higher the variance explained, the greater the influence of the factor on trait variation. Chl, LDMC, LNC, LPC, LT and SLA were leaf chlorophyll content, leaf dry matter content, leaf nitrogen content, leaf phosphorus content, leaf thickness and specific leaf area.
图4 不同大小林窗异质生境中群落加权平均性状变化。图中功能性状为对数转换后数值。
Fig. 4 Changes in community weight mean of leaf functional traits among different size of canopy gaps. Functional traits in the figure were log-transformed values.
图5 非生物因子对群落加权平均性状的线性模型分析。图中蓝色线条表示该因子对群落性状无显著效应, 红色线条表示具有显著正效应, 绿色线条为显著负效应。显著水平为0.05。
Fig. 5 Linear regression analysis of abiotic factors for community weight mean of leaf functional traits. The blue line indicates no significant effect of the factor on CWM, the red line indicates a significant positive effect, and the green line indicates a significant negative effect. The significance level is 0.05.
变异来源 Source of variability | 响应变量 Predictive variable | 预测变量 Response variable | 斜率 Slope | R2 | p | 相对重要性 Relative importance (%) |
---|---|---|---|---|---|---|
种间和种内 Inter- and intraspecific | CO | CWMpopulation_LPC | 0.016 | 0.67 | 0.007 | 100.00 |
种间 Interspecific | CO | CWMspecies_LPC | 0.003 | 0.62 | 0.012 | 17.79 |
种内 Intraspecific | - | - | - | - | - | 82.21 |
表3 群落叶磷含量的种间和种内来源分析
Table 3 Relative importance of inter- and intraspecific variability for community mean of leaf phosphorus content
变异来源 Source of variability | 响应变量 Predictive variable | 预测变量 Response variable | 斜率 Slope | R2 | p | 相对重要性 Relative importance (%) |
---|---|---|---|---|---|---|
种间和种内 Inter- and intraspecific | CO | CWMpopulation_LPC | 0.016 | 0.67 | 0.007 | 100.00 |
种间 Interspecific | CO | CWMspecies_LPC | 0.003 | 0.62 | 0.012 | 17.79 |
种内 Intraspecific | - | - | - | - | - | 82.21 |
[1] |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010). A multi-trait approach reveals the structure and the relative importance of intra-vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
DOI URL |
[2] |
Auger S, Shipley B (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24, 419-428.
DOI URL |
[3] |
Benavides R, Carvalho B, Bastias CC, López-Quiroga D, Mas A, Cavers S, Gray A, Albet A, Alía R, Ambrosio O, Aravanopoulos F, Auñón F, Avanzi C, Avramidou EV, Bagnoli F, et al. (2021). The GenTree Leaf Collection: inter- and intraspecific leaf variation in seven forest tree species in Europe. Global Ecology and Biogeography, 30, 590-597.
DOI URL |
[4] |
Chapin III FS (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[5] |
Chen B, Jiang L, Xie ZY, Li YD, Li JX, Li MJ, Wei CS, Xing C, Liu JF, He ZS (2021). Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamii natural forest. Biodiversity Science, 29, 439-448.
DOI |
[陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声 (2021). 格氏栲天然林林窗植物物种多样性与系统发育多样性. 生物多样性, 29, 439-448.]
DOI |
|
[6] | Cheng B, Zhao YJ, Zhang WG, An SQ (2010). The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 30, 1628-1637. |
[程滨, 赵永军, 张文广, 安树青 (2010). 生态化学计量学研究进展. 生态学报, 30, 1628-1637.] | |
[7] |
Chen HY, Huang YM, He KJ, Qi Y, Li EG, Jiang ZY, Sheng ZL, Li XY (2019). Temporal intraspecific trait variability drives responses of functional diversity to interannual aridity variation in grasslands. Ecology and Evolution, 9, 5731-5742.
DOI URL |
[8] |
Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126.
DOI URL |
[9] |
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
[10] |
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
DOI URL |
[11] | Feng XP, Liu JF, Supaporn B, He ZS, Jiang L, Hong W, Shi YW (2017). Ecological stoichiometric characteristics of litter-soil in gap of Castanopsis kawakamii natural forest in Sanming of Fujian. Journal of Plant Resources and Environment, 26(4), 18-24. |
[冯雪萍, 刘金福, Buajan Supaporn, 何中声, 江蓝, 洪伟, 施友文 (2017). 福建三明格氏栲天然林林窗凋落物-土壤的生态化学计量特征. 植物资源与环境学报, 26(4), 18-24.] | |
[12] |
He ZS, Liu JF, Wu CT, Zheng SQ, Hong W, Su SJ, Wu CZ (2012). Effects of forest gaps on some microclimate variables in Castanopsis kawakamii natural forest. Journal of Mountain Science, 9, 706-714.
DOI URL |
[13] | He ZS, Liu JF, Wu CT, Zheng SQ, Hong W, Xu DW, Wu CZ (2012a). The influence of forest gap on species competition of Castanopsis kawakamii natural forest updated layer. Journal of Mountain Science, 30, 165-171. |
[何中声, 刘金福, 吴彩婷, 郑世群, 洪伟, 徐道炜, 吴承祯 (2012a). 林窗对格氏栲天然林更新层物种竞争的影响. 山地学报, 30, 165-171.] | |
[14] | He ZS, Liu JF, Zhu DH, Hong W, Zheng SQ, Su SJ, Wu CZ (2012b). Effects of forest gaps on species niche in regeneration layers of Castanopsis kawakamii natural forest. Guihaia, 32, 624-629. |
[何中声, 刘金福, 朱德煌, 洪伟, 郑世群, 苏松锦, 吴承祯 (2012b). 林窗对格氏栲天然林更新层物种生态位的影响. 广西植物, 32, 624-629.] | |
[15] |
He ZS, Liu JF, Su SJ, Zheng SQ, Xu DW, Wu ZY, Hong W, Wang JLM (2015). Effects of forest gaps on soil properties in Castanopsis kawakamii nature forest. PLOS ONE, 10, e0141203. DOI: 10.1371/journal.pone.0141203.
DOI URL |
[16] |
Hu LL, Zhu JJ (2009). Determination of the tridimensional shape of canopy gaps using two hemispherical photographs. Agricultural and Forest Meteorology, 149, 862-872.
DOI URL |
[17] |
Jung VC, Violle C, Mondy C, Hoffmann L, Muller S (2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140.
DOI URL |
[18] |
Laforest-Lapointe I, Martínez-Vilalta J, Retana J (2014). Intraspecific variability in functional traits matters: case study of Scots pine. Oecologia, 175, 1337-1348.
DOI PMID |
[19] |
Li Q, Wang B, Deng Y, Lin LX, Dawa ZX, Zhang ZM (2019). Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests. Biodiversity Science, 27, 273-285.
DOI URL |
[李强, 王彬, 邓云, 林露湘, 达佤扎喜, 张志明 (2019). 西双版纳热带雨林林窗空间分布格局及其特征指数与林窗下植物多样性的相关性. 生物多样性, 27, 273-285.]
DOI |
|
[20] | Liang XD, Ye WH (2001). Advances in study on forest gaps. Journal of Tropical and Subtropical Botany, 9, 355-364. |
[梁晓东, 叶万辉 (2001). 林窗研究进展. 热带亚热带植物学报, 9, 355-364.] | |
[21] |
Liu HM, Yang QS, Fang XF, Ma ZP, Shen GC, Zhang ZG, Wang ZH, Wang XH (2015). Influences on gap species richness in a subtropical evergreen broadleaved forest. Biodiversity Science, 23, 149-156.
DOI URL |
[刘何铭, 杨庆松, 方晓峰, 马遵平, 沈国春, 张志国, 王樟华, 王希华 (2015). 亚热带常绿阔叶林林窗物种丰富度的影响因素. 生物多样性, 23, 149-156.]
DOI |
|
[22] | Liu JF, Hong W, Li JQ (2006). Characteristics of gaps renewal in Castanopsis kawakamii forests. Journal of Beijing Forestry University, 28(3), 14-19. |
[刘金福, 洪伟, 李俊清 (2006). 格氏栲林林窗更新特征的研究. 北京林业大学学报, 28(3), 14-19.] | |
[23] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[24] | Long CL (2006). Study on the regeneration niche of major tree species in gaps in the karst forest in Maolan Nature Reserve. Journal of Mountain Agriculture and Biology, 25, 302-306. |
[龙翠玲 (2006). 茂兰喀斯特森林林隙更新生态位的研究. 山地农业生物学报, 25, 302-306.] | |
[25] | Long CL (2008). Effects of gaps size on regeneration of karst forest in Maolan Natural Reserve of Guizhou Province. Journal of Nanjing Forestry University (Natural Sciences Edition), 32(2), 34-38. |
[龙翠玲 (2008). 茂兰喀斯特森林林隙大小对树种更新的影响. 南京林业大学学报(自然科学版), 32(2), 34-38.] | |
[26] | Luo SQ, Zhang GQ, Guo QQ, Liu SQ, Qi YJ (2020). Regeneration composition of woody plant species under forest gap in Maolan karst evergreen deciduous broad-leaved mixed forest. Chinese Journal of Ecology, 39, 2131-2139. |
[罗丝琼, 张广奇, 郭其强, 刘莎茜, 戚玉娇 (2020). 茂兰喀斯特常绿落叶阔叶混交林林窗下木本植物更新组成. 生态学杂志, 39, 2131-2139.] | |
[27] |
Messier J, McGill BJ, Lechowicz MJ (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
DOI PMID |
[28] |
Nishimura E, Suzaki E, Irie M, Nagashima H, Hirose T (2010). Architecture and growth of an annual plant Chenopodium album in different light climates. Ecological Research, 25, 383-393.
DOI URL |
[29] |
Oguchi R, Hiura T, Hikosaka K (2017). The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest. Tree Physiology, 37, 1113-1127.
DOI URL |
[30] | Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020). vegan: Community ecology package. R package version 2.5-7. [2020-11-28]. https://CRAN.R-project.org/package=vegan. |
[31] |
Paradis E, Schliep K (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
DOI URL |
[32] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[33] | Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2020). nlme: Linear and nonlinear mixed effects models. R package version 3.1-155. [2020-08-23]. https://CRAN.R-project.org/package=nlme. |
[34] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of United States of America, 101, 11001-11006.
DOI URL |
[35] |
Shipley B, de Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB (2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180, 923-931.
DOI PMID |
[36] |
Siefert A (2012). Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia, 170, 767-775.
DOI PMID |
[37] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, et al. (2015). A global meta- analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI PMID |
[38] | State Forestry Administration (1999). Forestry Industry Standard of the People’s Republic of China LY/T 1210- 1275-1999. Forest Soil Analysis Method. Standards Press of China, Beijing. |
[国家林业局 (1999). 中华人民共和国林业行业标准LY/T 1210-1275-1999 森林土壤分析方法. 中国标准出版社, 北京.] | |
[39] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI URL |
[唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
DOI |
|
[40] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[41] |
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
DOI URL |
[42] |
Watt AS (1947). Pattern and process in the plant community. Journal of Ecology, 35, 1-22.
DOI URL |
[43] |
Webb CT, Hoeting JA, Ames GM, Pyne MI, LeRoy Poff N (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283.
DOI URL |
[44] | Wu ML, Zhu J, Zhu Q, Huang X, Wang J, Liu Y (2019). Analysis of leaf functional traits and functional diversity of woody plants in evergreen and deciduous broad-leaved mixed forest of Xingdoushan. Acta Botanica Boreali-Occidentalia Sinica, 39, 1678-1691. |
[吴漫玲, 朱江, 朱强, 黄小, 王进, 刘易 (2019). 星斗山常绿落叶阔叶混交林木本植物叶功能性状及其多样性特征分析. 西北植物学报, 39, 1678-1691.] | |
[45] |
Yan QL, Zhu JJ, Zhang JP, Yu LZ, Hu ZB (2010). Spatial distribution pattern of soil seed bank in canopy gaps of various sizes in temperate secondary forests, Northeast China. Plant and Soil, 329, 469-480.
DOI URL |
[46] | Zhang JL, Zhang JZ, Shen JB, Tian J, Jin KM, Zhang FS (2020). Soil health and agriculture green development: opportunities and challenges. Acta Pedologica Sinica, 57, 783-796. |
[张俊伶, 张江周, 申建波, 田静, 金可默, 张福锁 (2020). 土壤健康与农业绿色发展: 机遇与对策. 土壤学报, 57, 783-796.] | |
[47] |
Zhang L, Wen ZM, Miao LP (2013). Source of variation of plant functional traits in the Yanhe River watershed: the influence of environment and phylogenetic background. Acta Ecologica Sinica, 33, 6543-6552.
DOI URL |
[张莉, 温仲明, 苗连朋 (2013). 延河流域植物功能性状变异来源分析. 生态学报, 33, 6543-6552.] | |
[48] | Zhou JH, Cheng XR, Yu MK, Zhuge JJ (2015). Responses of growth, leaf traits and biomass allocation of Phoebe sheareri seedlings to different habitats in forest gap. Journal of Northeast Forestry University, 43(12), 21-24. |
[周俊宏, 成向荣, 虞木奎, 诸葛建军 (2015). 紫楠幼苗生长、叶性状和生物量分配对林窗不同生境的响应. 东北林业大学学报, 43(12), 21-24.] | |
[49] |
Zhu JJ, Lu DL, Zhang WD (2014). Effects of gaps on regeneration of woody plants: a meta-analysis. Journal of Forestry Research, 25, 501-510.
DOI URL |
[50] | Zhu JJ (2003). Method for measurement of optical stratification porosity (OSP) and its application in studies of management for secondary forests. Chinese Journal of Applied Ecology, 14, 1229-1233. |
[朱教君 (2003). 透光分层疏透度测定及其在次生林结构研究中的应用. 应用生态学报, 14, 1229-1233.] |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[3] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[4] | 王进, 朱江, 艾训儒, 姚兰, 黄小, 吴漫玲, 朱强, 洪建峰. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457. |
[5] | 宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响[J]. 植物生态学报, 2017, 41(10): 1081-1090. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19