植物生态学报 ›› 2010, Vol. 34 ›› Issue (1): 64-71.DOI: 10.3773/j.issn.1005-264x.2010.01.010
所属专题: 生态化学计量
刘兴诏1,2, 周国逸1, 张德强1, 刘世忠1, 褚国伟1, 闫俊华1,*()
收稿日期:
2008-10-13
接受日期:
2009-02-17
出版日期:
2010-10-13
发布日期:
2010-01-01
通讯作者:
闫俊华
作者简介:
* E-mail: jhyan@scib.ac.cn
LIU Xing-Zhao1,2, ZHOU Guo-Yi1, ZHANG De-Qiang1, LIU Shi-Zhong1, CHU Guo-Wei1, YAN Jun-Hua1,*()
Received:
2008-10-13
Accepted:
2009-02-17
Online:
2010-10-13
Published:
2010-01-01
Contact:
YAN Jun-Hua
摘要:
选择南亚热带森林演替过程3个阶段(初期、中期和后期)的典型森林生态系统为研究对象, 在测定植物与土壤中全N、全P含量的基础上, 阐明了森林演替过程中植物与土壤的N、P化学计量特征。结果显示: 1)土壤中全N含量随演替进行而增加, 马尾松(Pinus massoniana)林(初期)、混交林(中期)和季风林(后期) 0-10 cm土层中全N含量分别为0.440、0.843和1.023 g·kg-1; 混交林0-10 cm土层中全P的含量最为丰富, 为0.337 g·kg-1, 马尾松林和季风林土壤全P含量分别为0.190和0.283 g·kg-1。2)植物叶片中全N、全P的含量随演替呈减少的趋势, 但根系中全N、全P的含量都以马尾松林为最多, 混交林和季风林含量彼此相当。3)各土层中N:P随演替的进行呈现明显增加趋势, 马尾松林、混交林和季风林0-10 cm土层中N:P分别为2.3、2.5和3.6; 植物各器官中N:P随演替的进行也呈增加趋势, 且叶片和根系中的N:P相近, 马尾松林、混交林和季风林叶片中N:P分别为22.7、25.3和29.6。基于上述结果, 探讨了南亚热带森林生态系统植物与土壤中N:P特征、森林演替过程中植物与土壤中N:P变化规律以及P对南亚热带森林生态系统的限制作用。结果表明, P已经成为南亚热带森林生态系统生物生长和重要生态过程的限制因子。
刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71. DOI: 10.3773/j.issn.1005-264x.2010.01.010
LIU Xing-Zhao, ZHOU Guo-Yi, ZHANG De-Qiang, LIU Shi-Zhong, CHU Guo-Wei, YAN Jun-Hua. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. DOI: 10.3773/j.issn.1005-264x.2010.01.010
图1 鼎湖山3种不同演替阶段森林土壤的氮磷含量。误差线代表标准误(SE); 同一土层具有不同字母的表示差异显著 (p < 0.05)。图中氮、磷值为2005年数据。MEBF, 季风常绿阔叶林; MF, 混交林; PF, 马尾松林。
Fig. 1 Soil total nitrogen and phosphorus concentrations among three forest types at different succession stages in Dinghushan. Different letters indicate significant differences at the confidence level of p < 0.05 in the same soil layer among the three forests. Data source: 2005. MEBF, monsoon evergreen broad-leaved forest; MF, mixed forest; PF, pine forest.
图2 鼎湖山3种不同演替阶段植被的N、P含量。季风林数据时间范围是1992-2005年; 混交林为2001-2006年; 马尾松林为1992-2006年。同一部分具有不同字母的表示差异显著(p < 0.05)。MEBF、MF、PF, 同图1。
Fig. 2 Plant total nitrogen and phosphorus concentrations among three types of forests at different succession stages in Dinghushan. Data source: MEBF, from 1992 to 2005; MF, from 2001 to 2006; PF, from 1992 to 2006. Different letters indicate significant differences at the confidence level of p<0.05 in the same plant parts among the three forests; MEBF, MF, PF, see Fig. 1.
共有种 Common species1) | 叶 Leaf | 根 Root | |||||
---|---|---|---|---|---|---|---|
N | P | N:P | N | P | N:P | ||
马尾松 Pinus massoniana | 0.179 | 0.001** | 0** | 0.793 | 0** | 0** | |
荷木 Schima superba | 0** | 0.064 | 0** | 0.092 | 0.043* | 0.101 | |
锥栗 Castanopsis chinensis | 0.621 | 0.230 | 0.27 | 0.020* | 0** | 0.001** |
表1 不同演替阶段相同物种的N、P含量差异分析
Table 1 Differences between the common species at different succession stages
共有种 Common species1) | 叶 Leaf | 根 Root | |||||
---|---|---|---|---|---|---|---|
N | P | N:P | N | P | N:P | ||
马尾松 Pinus massoniana | 0.179 | 0.001** | 0** | 0.793 | 0** | 0** | |
荷木 Schima superba | 0** | 0.064 | 0** | 0.092 | 0.043* | 0.101 | |
锥栗 Castanopsis chinensis | 0.621 | 0.230 | 0.27 | 0.020* | 0** | 0.001** |
图4 鼎湖山3种林型植物的N:P。同一部分具有不同字母的表示差异显著(p < 0.05)。MEBF、MF、PF, 同图1。
Fig. 4 N:P ratio in the plant of three types of forests in Dinghushan. Different letters indicate significant differences at the confidence level of p < 0.05 in the same plant parts among the three forests. MEBF, MF, PF, see Fig. 1.
[1] |
Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990). Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science, 248, 477-480.
URL PMID |
[2] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] | Asner GP, Townsend A, Riley WJ, Matson PA, Neff JC, Clevel CC (2001). Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry, 54, 1-39. |
[4] | Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology, 76, 1407-1424. |
[5] | Fang YT (方运霆), Mo JM (莫江明), Jiang YQ (江远清), Li DJ (李德军), Gundersen PER (2005). Acidity and inorganic nitrogen concentrations in soil solution in short-term response to N addition in subtropical forests. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 13, 123-129. (in Chinese with English abstract) |
[6] | Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003). The nitrogen cascade. BioScience, 53, 341-356. |
[7] |
Galloway JN, Coeling EB (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31, 64-71.
URL PMID |
[8] | Guan LL (官丽莉), Zhou GY (周国逸), Zhang DQ (张德强), Liu JX (刘菊秀), Zhang QM (张倩媚) (2004). Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan Forest Ecosystem Research Station. Acta Phytoecologica Sinica (植物生态学报), 28, 449-456. (in Chinese with English abstract) |
[9] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[10] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[11] | He YQ, Zhu YG, Smith SE, Smith FA (2002). Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture. Journal of Plant Nutrition, 25, 913-925. |
[12] |
Hedin LO (2004). Global organization of terrestrial plant nutrient interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850.
URL PMID |
[13] |
Houlton BZ, Wang YP, Vitousek PM, Field CB (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-330.
DOI URL PMID |
[14] |
Kellogg LE, Bridghain SD (2003). Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient. Biogeochemistry, 63, 299-315.
DOI URL |
[15] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. The Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[16] | Lu SW (陆时万), Xu XS (徐祥生), Shen MJ (沈敏健) (1991). Botany (植物学) 2nd edn. Higher Education Press, Beijing. 83. (in Chinese) |
[17] |
Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848-850.
URL PMID |
[18] | Mo JM (莫江明), Xue JH (薛璟花), Fang YT (方运霆) (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica (生态学报), 24, 1413-1420. (in Chinese with English abstract) |
[19] | Mo JM (莫江明), Zhang DQ (张德强), Huang ZL (黄忠良), Yu QF (余清发), Kong GH (孔国辉) (2000). Distribution pattern of nutrient elements in plants of Dinghushan lower subtropical evergreen broad-leaved forest. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 8, 198-206. (in English with Chinese abstract) |
[20] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412. |
[21] | Peng SL (彭少麟), Liu Q (刘强) (2002). The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica (生态学报), 22, 1534-1544. (in Chinese with English abstract) |
[22] | Peng SL (彭少麟), Wang BS (王伯荪) (1993). Forest succession at Dinghushan, Guangdong, China. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 2, 34-42. (in Chinese with English abstract) |
[23] |
Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922-925.
DOI URL PMID |
[24] | Schleppi P, Muller N, Edwards PJ, Bucher JB (1999). Three years of increased nitrogen deposition do not affect the vegetation of a montane forest ecosystem. Phyton, 39, 197-204. |
[25] |
Wardle DA, Walker LR, Bardgett RD (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513.
URL PMID |
[26] | Wassen MJ, Olde Venterink HGM, de Swart EOAM (1995). Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 6, 5-16. |
[27] | Yan ER (阎恩荣), Wang XH (王希华), Zhou W (周武) (2008). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 13-22. (in Chinese with English abstract) |
[28] | Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica (植物生态学报), 29, 1007-1019. (in Chinese with English abstract) |
[29] | Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005). Pools and distributions of soil phosphorus in China. Global Biogeochemical Cycles, 19, GB1020. doi: 10.1029/2004GB002296. |
[30] | Zhang DQ (张德强), Ye WH (叶万辉), Yu QF (余清发), Kong GH (孔国辉), Zhang YZ (张佑倡) (2000). The litter fall of respresentative forests of successional series in Dinghushan. Acta Ecologica Sinica (生态学报), 20, 938-944. (in Chinese with English abstract) |
[31] | Zhou GY (周国逸), Yan JH (闫俊华) (2001). The influence of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. Acta Ecologica Sinica (生态学报), 21, 2002-2012. (in Chinese with English abstract) |
[1] | 聂秀青 王冬 周国英 熊丰 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 0-0. |
[2] | 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713. |
[3] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[4] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[5] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[6] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[7] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 胡苑柳, 陈国茵, 陈静文, 孙连伟, 李健陵, 窦宁, 张德强, 邓琦. 模拟酸沉降对南亚热带季风常绿阔叶林土壤微生物群落结构的长期影响[J]. 植物生态学报, 2021, 45(3): 298-308. |
[10] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[11] | 潘权 郑华 王志恒 文志 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 0-0. |
[12] | 李周园 叶小洲 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 0-0. |
[13] | 井新 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 0-0. |
[14] | 张宏锦 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 0-0. |
[15] | 李海东 吴新卫 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2021, 45(10): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19