[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响

展开
  • 1 中国科学院沈阳应用生态研究所, 中国科学院森林生态与管理重点实验室, 沈阳 110016
    2 中国科学院清原森林生态系统观测研究站, 沈阳 110016
    3 中国科学院大学, 北京 100049

收稿日期: 2018-02-12

  修回日期: 2018-05-09

  网络出版日期: 2018-07-20

基金资助

国家自然科学基金(31330016);国家自然科学基金(31570600)

Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broadleaved species in a montane region of eastern Liaoning Province, China

Expand
  • 1 Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    2 Qingyuan Forest Chinese Ecosystem Research Network, Chinese Academy of Sciences, Shenyang 110016, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-02-12

  Revised date: 2018-05-09

  Online published: 2018-07-20

Supported by

Supported by the National Natural Science Foundation of China.(31330016);Supported by the National Natural Science Foundation of China.(31570600)

摘要

凋落物是森林生态系统养分的重要来源, 叶片脱落时间是影响其分解的关键因素。东北温带森林中蒙古栎(Quercus mongolica)落叶时间较其他树种晚, 在山脊等贫瘠立地叶片甚至第二年春天才脱落。我们假设: 相对于其他树种, 蒙古栎叶片养分元素含量过高、再吸收时间长, 导致叶片延迟脱落。为验证假设, 除蒙古栎外, 选择了落叶时间居中的色木槭(Acer mono)和落叶较早的胡桃楸(Juglans mandshurica)为对象, 持续监测叶片从成熟至凋落过程中叶片养分元素含量, 包括大量元素: 氮(N)、磷(P)、钾(K)、钙(Ca)和镁(Mg), 微量元素: 铁(Fe)、铜(Cu)、锰(Mn)和锌(Zn); 并分析养分再吸收率。结果表明: 蒙古栎成熟叶养分元素含量介于对照树种之间; 凋落叶N、P和K含量低于对照树种, Fe和Mn含量高于对照树种, 其余元素含量介于对照树种之间。该结果不支持“蒙古栎叶片养分含量过高”假设。蒙古栎叶片N、P和K再吸收率高于对照树种, 再吸收率高低与其落叶时间完全一致; 叶片Cu和Zn再吸收率与对照树种无显著差异; 叶片其余元素未发生再吸收, 其累积率与对照树种无显著差异; 说明养分再吸收与养分含量无关, 可能与树种的种专一性相关, 可能会影响叶片脱落时间。由于蒙古栎多生长在贫瘠土壤, 其成熟叶无法积累更多养分; 为避免叶片脱落后养分进入土壤被其他物种利用, 将养分尽量回收储存于自身, 即蒙古栎叶片养分再吸收过程较长, 叶片脱落较晚。生长在极端贫瘠立地的蒙古栎叶片次年春天才落叶, 可能是由于再吸收一直在进行, 来不及脱落而保留至新生长季开始。落叶晚的树种养分再吸收率高、有利于自身养分保存, 更能适应贫瘠土壤, 反之亦然。

本文引用格式

申奥, 朱教君, 闫涛, 卢德亮, 杨凯 . 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018 , 42(5) : 573 -584 . DOI: 10.17521/cjpe.2018.0041

Abstract

Aims Litter is an important source of nutrient in forest ecosystems, and its decomposition rate has a significant impact on soil nutrient supply. Previous observations indicated that different leaf falling time resulted in different litter decomposition rates. We found that the leaf falling time of Quercus mongolica was later than that of other tree species, especially in the barren soil. However, it is not yet clear why the leaves of Q. mongolica fall later. We hypothesized that the leaves of Q. mongolica had higher nutrient concentration, and longer time for resorption, which could lead to the later time of leaf falling.

Methods We continuously measured N, P, K, Ca, Mg, Cu, Fe, Mn and Zn concentrations in leaves of three tree species (Q. mongolica, the leaf falling time is the last; Juglans mandshurica, the leaf falling time is the earliest, Acer mono, the leaf falling time is in between Q. mongolica and J. mandshurica) from leaf maturity (August) to litter fall (October) in a montane region of eastern Liaoning Province. We analyzed leaf nutrient concentrations and resorption efficiencies of each species.

Important findings The nutrient concentrations in mature leaves of Q. mongolica are similar to those of other tree species. N, P and K concentrations in the litter of Q. mongolica were significantly lower than those of other species (p < 0.05), and the resorption efficiencies were generally consistent with the leaf falling time. These findings did not support the hypothesis that leaves of Q. mongolica have higher nutrient concentrations than other species. The resorption efficiencies of N, P and K did not influence leaf nutrient concentrations, but were directly related to the biological characteristics of tree species. The leaves of Q. mongolica fall later, which might be due to the high adaptability of Q. mongolica to the barren soil. Although the mature leaves could not accumulate more nutrients from barren soil, they increased the nutrient use efficiency by prolonging the nutrient resorption time. We inferred that leaves with higher nutrient resorption efficiency would fall later, because of greater nutrient storage such as Q. mongolica, which is better adapted to barren soil than other tree species. On the contrary, trees with lower nutrient resorption efficiency generally grow better in the fertile soil, such as J. mandshurica.

[an error occurred while processing this directive]

参考文献

[1] Aerts R ( 1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
[2] Arneth A, Kelliher FM, Bauer G, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Ziegler W, Vygodskaya NN, Milukova I, Sogachov A, Varlagin A, Schulze ED ( 1996). Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia. Tree Physiology, 16, 247-255.
[3] Chapin III FS, Moilanen L ( 1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
[4] Chen GS, Zeng DH, Chen FS ( 2004). Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai Sandy Land, northeast China. Journal of Forestry Research, 15, 11-18.
[5] Chen YT, Xu ZZ ( 2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
[5] [ 陈莹婷, 许振柱 ( 2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
[6] Corte GN, Macchiaverni P, Fabbro IMD, Haddad CRB ( 2009). Nitrogen availability, leaf life span and nitrogen conservation mechanisms in leaves of tropical trees. Scientia Agricola, 66, 812-818.
[7] Del Arco JM, Escudero A, Garrido MV ( 1991). Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708.
[8] Drenovsky RE, Koehler CE, Skelly K, Richards JH ( 2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50.
[9] Fan CN, Guo ZL, Zheng JP, Li B, Yang BG, Yue L, Yu HB ( 2014). The amount and dynamics of litterfall in the natural secondary forest in Mopan Mountain. Acta Ecologica Sinica, 34, 633-641.
[9] [ 范春楠, 郭忠玲, 郑金萍, 李兵, 杨保国, 岳龙, 于洪波 ( 2014). 磨盘山天然次生林凋落物数量及动态. 生态学报, 34, 633-641.]
[10] Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K ( 2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology & Management, 228, 33-39.
[11] Hu LL, Mao ZH, Zhu JJ, Liu ZG, Chen GH, Zhang LJ ( 2005). Classification and ordination of secondary forests in montane zone of eastern Liaoning Province. Acta Ecologica Sinica, 25, 2848-2854.
[11] [ 胡理乐, 毛志宏, 朱教君, 刘足根, 陈广华, 张立君 ( 2005). 辽东山区天然次生林的数量分类. 生态学报, 25, 2848-2854.]
[12] Huo XM, Zhang JS ( 2002). Characteristics of Quercus mongolica. Journal of Inner Mongolia Forestry, ( 11), 35.
[12] [ 霍锡敏, 张劲松 ( 2002). 柞树的特性. 内蒙古林业, ( 11), 35.]
[13] Jiang TH, Zhan XH, Xu YC, Zhou LX, Zong LG ( 2005). Roles of calcium in stress-tolerance of plants and its ecological significance. Chinese Journal of Applied Ecology, 16, 971-976.
[13] [ 蒋廷惠, 占新华, 徐阳春, 周立祥, 宗良纲 ( 2005). 钙对植物抗逆能力的影响及其生态学意义. 应用生态学报, 16, 971-976.]
[14] Killingbeck KT ( 1986). The terminological jungle revisited: Making a case for use of the term resorption. Oikos, 46, 263-264.
[15] Killingbeck KT ( 1996). Nutrients in senescing leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
[16] Killingbeck KT, Hammen-Winn SL, Vecchio PG, Goguen ME ( 2002). Nutrient resorption efficiency and proficiency in fronds and trophopods of a winter-deciduous fern, Dennstaedtia punctilobula. International Journal of Plant Sciences, 163, 99-105.
[17] Li RH, Deng Q, Zhou GY, Zhang DQ ( 2011). Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 35, 699-706.
[17] [ 李荣华, 邓琦, 周国逸, 张德强 ( 2011). 起始时间对亚热带森林凋落物分解速率的影响. 植物生态学报, 35, 699-706.]
[18] Li YK ( 1989). Methods of Conventional Analysis of Soil Agricultural Chemistry. Science Press, Beijing .
[18] [ 李酉开 ( 1989). 土壤农业化学常规分析方法. 科学出版社,北京.]
[19] Li YN, Zhou XM, Zhang NL, Ma KP ( 2016). The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 36, 4977-4987.
[19] [ 李宜浓, 周晓梅, 张乃莉, 马克平 ( 2016). 陆地生态系统混合凋落物分解研究进展. 生态学报, 36, 4977-4987.]
[20] Li YX, Cha ZZ, Luo W, Lin ZM, Bei MR ( 2009). Dynamics and transfer of nutrients in the seeding leaves of three Eucalyptus varieties. Scientia Silvae Sinicae, 45(1), 152-157.
[20] [ 理永霞, 茶正早, 罗微, 林钊沐, 贝美容 ( 2009). 3种桉树幼苗叶片养分变化及其转移特性. 林业科学, 45(1), 152-157.]
[21] Liang QX, Cao GQ, Su MJ, Qin GY ( 2006). Research progress on plant leaf senescence. Chinese Agricultural Science Bulletin, 22, 282-285.
[21] [ 梁秋霞, 曹刚强, 苏明杰, 秦广雍 ( 2006). 植物叶片衰老研究进展. 中国农学通报, 22, 282-285.]
[22] Liu HW ( 2014). The Comparative Study on Leaf Functional Traits and Nutrient Resorption in Two Different Ecosystems of Chongqing. Master degree dissertation, Southwest University, Chongqing.
[22] [ 刘宏伟 ( 2014). 两种不同生态系统中植物叶片功能性状及养分再吸收比较研究. 硕士学位论文, 西南大学, 重庆.]
[23] Liu JQ, Wang XY, Guo Y, Wang SL, Zhou L, Dai LM, Yu DP ( 2015). Seasonal dynamics and resorption efficiencies of foliar nutrients in three dominant woody plants that grow at the treeline on Changbai Mountain. Acta Ecologica Sinica, 35, 165-171.
[23] [ 刘佳庆, 王晓雨, 郭焱, 王守乐, 周莉, 代力民, 于大炮 ( 2015). 长白山林线主要木本植物叶片养分的季节动态及回收效率. 生态学报, 35, 165-171.]
[24] Liu MM, Zeng YR, Jiang JB, Han J, Yu WW ( 2014). Mineral elements in leaves and seeds of Torreya grandis ‘Merrillii’ during seed development. Journal of Zhejiang A & F University, 31, 724-729.
[24] [ 刘萌萌, 曾燕如, 江建斌, 韩炯, 喻卫武 ( 2014). 香榧生长期叶片和种子中矿质元素动态变化研究. 浙江农林大学学报, 31, 724-729.]
[25] May JD, Killingbeck KT ( 1992). Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 73, 1868-1878.
[26] Mi L, Su R, Zhang JZ, Ao T ( 1999). Quercus mongolica Fisch nutrient composition and deprivation of its poison. Journal of Inner Mongolia Forestry College, 21(1), 73-76.
[26] [ 米拉, 苏日娜, 张建中, 敖特根 ( 1999). 柞树叶营养成分及脱毒处理的研究. 内蒙古林学院学报(自然科学版), 21(1), 73-76.]
[27] Pornon A, Lamaze T ( 2007). Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub,Rhododendron ferrugineum, in a subalpine environment.New Phytologist, 175, 301-310.
[28] Qiang XC, Yuan HL, Gao WS ( 2004). Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass. Chinese Journal of Applied Ecology, 15, 469-472.
[28] [ 强学彩, 袁红莉, 高旺盛 ( 2004). 秸秆还田量对土壤CO2释放和土壤微生物量的影响. 应用生态学报, 15, 469-472.]
[29] Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N ( 2008). Nutrient resorption patterns of plant functional groups in a tropical savanna: Variation and functional significance. Oecologia, 157, 141-151.
[30] Sauter JJ, van Cleve B, Apel K ( 1988). Protein bodies in ray cells of Populus × canadensis Moench ‘robusta’. Planta, 173, 31-34.
[31] Sun SC, Chen LZ ( 2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82.
[31] [ 孙书存, 陈灵芝 ( 2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.]
[32] Vitousek PM ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
[33] Vitousek PM, Aplet G, Turner D, Lockwood JJ ( 1992). The Mauna Loa environment matrix: Foliar and soil nutrients. Oecologia, 89, 372-382.
[34] Walters MB, Gerlach JP ( 2013). Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiology, 33, 297-310.
[35] Wang WQ, Lin P ( 1999). Studies on the nutrient retranslocation efficiencies during leaf senescence. Journal of Wuhan Botanical Research, 17, 117-122.
[35] [ 王文卿, 林鹏 ( 1999). 树木叶片衰老过程中养分元素内吸收研究. 武汉植物学研究, 17, 117-122.]
[36] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender BJ, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
[37] Wright IJ, Westoby M ( 2003). Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19.
[38] Xing XR, Han XG, Chen LZ ( 2000). A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 11, 785-790.
[38] [ 邢雪荣, 韩兴国, 陈灵芝 ( 2000). 植物养分利用效率研究综述. 应用生态学报, 11, 785-790.]
[39] Xue L, Xu Y, Wu M, Li Y ( 2005). Seasonal patterns in nitrogen and phosphorus and resorption in leaves of four tree species. Acta Ecologica Sinica, 25, 520-526.
[39] [ 薛立, 徐燕, 吴敏, 李燕 ( 2005). 4种阔叶树种叶中氮和磷的季节动态及其转移. 生态学报, 25, 520-526.]
[40] Yan T, Lü XT, Yang K, Zhu JJ ( 2016). Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in northeast, China. Journal of Plant Ecology, 9, 165-173.
[41] Yan T, Yang K, Zhu JJ ( 2014 a). Leaf N, P and K resorption of major tree species in a montane region of eastern Liaoning Province, China. Chinese Journal of Ecology, 33, 2005-2011.
[41] [ 闫涛, 杨凯, 朱教君 ( 2014 a). 辽东山区主要树种叶片氮、磷、钾再吸收. 生态学杂志, 33, 2005-2011.]
[42] Yan T, Zhu JJ, Yang K, Yu LZ ( 2014 b). Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 25, 2772-2778.
[42] [ 闫涛, 朱教君, 杨凯, 于立忠 ( 2014 b). 辽东山区落叶松人工林地上生物量和养分元素分配格局. 应用生态学报, 25, 2772-2778.]
[43] Yin LM, Wang LH, Liu B ( 2009). Dynamic variation and resorption of nutrient elements in the leaves of Xanthoceras sorbifolia Bunge. Bulletin of Botanica Research, 29, 685-691.
[43] [ 阴黎明, 王力华, 刘波 ( 2009). 文冠果叶片养分元素含量的动态变化及再吸收特性. 植物研究, 29, 685-691.]
[44] Yu SL, Ma KP ( 2000). Preliminary discussion on the origin of Quercus mongolica forest in north China. Guihaia, 20(2), 131-137.
[44] [ 于顺利, 马克平 ( 2000). 中国北方蒙古栎林起源和发展的初步探讨. 广西植物, 20(2), 131-137.]
[45] Yuan YX ( 1996). The roles of microelements in plant life. Bulletin of Biology, ( 4), 4-8.
[45] [ 袁玉信 ( 1996). 微量元素在植物生活中的作用. 生物学通报, ( 4), 4-8.]
[46] Yuan Z, Chen HYH ( 2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology & Biogeography, 18, 532-542.
[47] Zeng DH, Chen GS, Chen FS, Zhao Q, Ji XY ( 2005). Foliar nutrients and resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 41(5), 21-27.
[47] [ 曾德慧, 陈广生, 陈伏生, 赵琼, 冀小燕 ( 2005). 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 41(5), 21-27.]
[48] Zhou DC ( 1983). The main physiological roles and absorption of N, P and K in plants. Bulletin of Biology, ( 5), 9-10.
[48] [ 周德超 ( 1983). 氮、磷、钾在植物体中的主要生理作用及植物对养分的吸收. 生物学通报, ( 5), 9-10.]
[49] Zhu JJ, Mao ZH, Hu LL, Zhang JX ( 2007). Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China. Journal of Forest Research, 12, 403-416.
[50] Zhu JJ, Tan H, Li FQ, Chen M, Hu LL ( 2009). Comparison of near-ground air temperature and soil temperature of summer within three gaps of different sizes at secondary forest in eastern montane region of Liaoning Province. Scientia Silvae Sinicae, 45(8), 161-165.
[50] [ 朱教君, 谭辉, 李凤芹, 陈梅, 胡理乐 ( 2009). 辽东山区次生林3种大小林窗夏季近地面气温及土壤温度比较. 林业科学, 45(8), 161-165.]
文章导航

/

[an error occurred while processing this directive]