[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
综述

种子异型性及其生态意义的研究进展

展开
  • 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2中国科学院研究生院, 北京 100049

收稿日期: 2009-09-02

  录用日期: 2009-01-25

  网络出版日期: 2010-05-01

Review of research on seed heteromorphism and its ecological significance

Expand
  • 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2009-09-02

  Accepted date: 2009-01-25

  Online published: 2010-05-01

摘要

种子异型性是指同一植株产生不同形状或行为种子的现象。根据异型种子在植株上的生长位置, 种子异型性可划分为地上下结实性和地上种子异型性两类。此现象已在26科129属292种被子植物中报道。异型性种子植物主要分布于干旱半干旱区、荒漠和盐渍土地区等干扰强烈的环境, 在菊科和藜科中最为常见, 主要出现在一年生植物中。种子异型性在避免密集负效应、减弱同胞子代间的竞争、采取两头下注策略以适应时空异质性环境等方面具有重要的进化生态意义。该文系统总结了国内外种子异型性的研究工作, 主要内容包括: 1)种子异型性的概念、类型和种类, 2)具有异型种子植物的生境和生活型, 3)异型种子的生态学特性, 4)种子异型性的理论模型, 5)种子异型性的生态意义。在综述文献的基础上, 对今后的研究进行了展望。针对国内外的研究现状, 提出两点建议: 1)系统调查具有种子异型性现象的植物种类, 摸清其生物学特性; 2)确定研究种子异型性现象的模式植物, 从生态学、生理学和分子生物学等学科角度来研究种子异型性的个体发育机制及分子调控机理。

本文引用格式

王雷, 董鸣, 黄振英 . 种子异型性及其生态意义的研究进展[J]. 植物生态学报, 2010 , 34(5) : 578 -590 . DOI: 10.3773/j.issn.1005-264x.2010.05.012

Abstract

Seed heteromorphism is the production of seeds of different form or behavior by single individuals. According to the relative position of seeds on the plant, seed heteromorphism can be divided into amphicarpy and heterodiaspory. Seed heteromorphism has been reported in 26 families, 129 genera and 292 species of angiosperms. Most heteromorphic plants studied are annuals, often species in Asteraceae and Chenopodiaceae faced with stochastic environments such as arid, semiarid, desert and saline soil. Seed heteromorphism is generally considered to play an important role in escaping from the negative effect of crowding, reducing sib competition and adapting to environment by following bet-hedging strategy. We review and analyze recent advances in seed heteromorphism research, with emphases on 1) conception and types of seed heteromorphism and the species of the heteromorphic plants, 2) habitats and life types of the heteromorphic plants, 3) ecological characteristics of heteromorphic seeds, 4) theoretical model of seed heteromorphism and 5) ecological significance of seed heteromorphism. In addition, we discuss prospects for further research in this area and suggest 1) species with seed heteromorphism should be investigated and their biological characteristics should be studied and 2) the model plant of seed heteromorphism needs to be selected and ecological, physiological and molecular biological methods should be used to reveal the ontogenetic and molecular controlling mechanisms.

[an error occurred while processing this directive]

参考文献

[1] Andersson S (2001). The genetic basis of floral variation in Senecio jacobaea (Asteraceae). Journal of Heredity, 92, 409-414.
[2] Bachmann K (1983). Evolutionary genetics and the genetic control of morphogenesis in flowering plants. Evolutionary Biology, 16, 157-208.
[3] Bachmann K, Chambers KL, Price HJ (1984). Genetic components of heterocarpy in Microseris hybrid B87 (Asteraceae, Lactuceae). Plant Systematics and Evolution, 148, 149-164.
[4] Baker GA, O’Dowd DJ (1982). Effects of parent plant density on the production of achene types in the annual Hypochoeris glabra. Journal of Ecology, 70, 201-215.
[5] Baskin JM, Baskin CC (1976). Germination dimorphism in Heterotheca subaxillaris var. subaxillari. Bulletin of the Torrey Botanical Club, 103, 201-206.
[6] Beadle NCW (1952). Studies in halophytes. I. The germination of the seed and establishment of the seedling of five species of Atriplex in Australia. Ecology, 33, 49-62.
[7] Becker H (1912). über die Keimung verschiedenartiger Früchte und Samen bei derselben Spezies. Beihefte Botanisches Centralblatt, 29, 21-143.
[8] Beneke K, van Rooyen MW, Theron GK, van de Venter HA (1993). Fruit polymorphism in ephemeral species of Namaqualand. III. Germination differences between the polymorphic diaspores. Journal of Arid Environments, 24, 333-344.
[9] Berger A (1985). Seed dimorphism and germination behaviour in Salicornia patula. Vegetatio, 61, 137-143.
[10] Br?ndel M (2004). Dormancy and germination of heteromorphic achenes of Bidens frondosa. Flora, 199, 228-233.
[11] Br?ndel M (2007). Ecology of achene dimorphism in Leontodon saxatilis. Annals of Botany, 100, 1189-1197.
[12] Cavers PB, Harper JL (1966). Germination polymorphism in Rumex crispus and Rumex obtusifolius. Journal of Ecology, 54, 367-382.
[13] Cheplick GP (1983). Differences between plants arising from aerial and subterranean seeds in the amphicarpic annual Cardamine chenopodifolia (Cruciferae). Bulletin of the Torrey Botanical Club, 110, 442-448.
[14] Cheplick GP, Quinn JA (1982). Amphicarpum purshii and the “pessimistic strategy” in amphicarpic annuals with subterranean fruit. Oecologia, 52, 327-332.
[15] Cheplick GP, Quinn JA (1983). The shift in aerial/subterranean fruit ratio in Amphicarpum purshii: causes and significance. Oecologia, 57, 374-379.
[16] Cheplick GP (1987). The ecology of amphicarpic plants. Trends in Ecology & Evolution, 2, 97-101.
[17] Cheplick GP (1994). Life history evolution in amphicarpic plants. Plant Species Biology, 9, 119-131.
[18] Cordazzo CV (2006). Seed characteristics and dispersal of dimorphic fruit segments of Cakile maritime Scopoli (Brassicaceae) population of southern Brazilian coastal dunes. Revista Brasileira de Botanica, 29, 259-265.
[19] Correns C (1906). Das Keimen der beiderlei Früchte der Dimorphoteca pluvialis. Berichte der Deutschen Botanischen Gesellschaft, 24, 173-176.
[20] de la Bandera MC, Traveset A (2006). Reproductive ecology of Thymelaea velutina (Thymelaeaceae)—Factors contribut- ing to the maintenance of heterocarpy. Plant Systematics and Evolution, 256, 97-112.
[21] Dowling RE (1933). The reproduction of Plantago coronopus: an example of morphological and biological seed dimorphism. Annals of Botany, 47, 861-872.
[22] EI-Keblawy A (2003). Effects of achene dimorphism on dormancy and progeny traits in the two ephemerals Hedypnois cretica and Crepis aspera (Asteraceae). Canadian Journal of Botany, 81, 550-559.
[23] Ellner SP, Shmida A (1981). Why are adaptations for long-range seed dispersal rare in desert plant? Oecologia, 51, 133-144.
[24] Ellner SP, Shmida A (1984). Seed dispersal in relation to habitat in the genus Picris (Compositae) in Mediterranean and arid regions. Israel Journal of Botany, 33, 25-39.
[25] Ernst A (1906). Das Keimen der dimorphen Früchte von Synedrella nodiflora (L.) Grtn. Berichte der Deutschen Botanischen Gesellschaft, 24, 450-458.
[26] Ganders FR, Carey K, Griffiths AJF (1977). Natural selection for fruit dimorphism in Plectritis congesta (Valerianaceae). Evolution, 31, 873-881.
[27] Gao R (高蕊), Wei Y (魏岩) (2007). Amphicarpy of Ceratocarpus arenarius (Chenopodiaceae) in Junggar desert. Acta Botanica Yunnanica (云南植物研究), 29, 300-302. (in Chinese with English abstract)
[28] Gao R (高蕊), Wei Y (魏岩), Yan C (严成) (2008). Amphicarpy and seed germination behavior of Ceratocarpus arenarius L. (Chenopodiaceae). Chinese Journal of Ecology (生态学杂志), 27(1), 23-27. (in Chinese with English abstract)
[29] Gibson JP (2001). Ecological and genetic comparison between ray and disc achene pools of the heteromorphic species Prionopsis ciliata (Asteraceae). International Journal of Plant Sciences, 162, 137-145.
[30] He XQ (贺新强), Li FZ (李法曾) (1995). Seed morphology of Atriplex L. from China and its taxonomic significance. Bulletin of Botanical Research (植物研究), 15, 65-71. (in Chinese with English abstract)
[31] Imbert E (1999). The effects of achene dimorphism on the dispersal in time and space in Crepis sancta (Asteraceae). Canadian Journal of Botany, 77, 508-513.
[32] Imbert E (2002). Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36.
[33] Imbert E, Escarré J, Lepart J (1996). Achene dimorphism and among-population variation in Crepis sancta (Asteraceae). International Journal of Plant Sciences, 157, 309-315.
[34] Imbert E, Escarré J, Lepart J (1997). Seed heteromorphism in Crepis sancta (Asteraceae): performance of two morphs in different environments. Oikos, 79, 325-332.
[35] Kaul V, Koul AK, Sharma MC (2000). The underground flower. Current Science, 78, 39-44.
[36] Khan MA, Ungar IA (1984a). Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd. Botanical Gazette, 145, 487-494.
[37] Khan MA, Ungar IA (1984b). The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. American Journal of Botany, 71, 481-489.
[38] Khan MA, Gul B, Weber DJ (2001). Germination of dimorphic seeds of Suaeda moquinii under high salinity stress. Australian Journal of Botany, 49, 185-192.
[39] Koller D, Roth N (1964). Studies on the ecological and physiological significance of amphicarpy in Gyminarrhena micrantha (Compositae). American Journal of Botany, 51, 26-35.
[40] Li WQ, Liu XJ, Khan MA, Yamaguchi S (2005). The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. Journal of Plant Research, 118, 207-214.
[41] Li WQ (李伟强), Liu XJ (刘小京), Mao RZ (毛任钊), An P (安萍), Qiao HL (乔海龙), Huang W (黄玮), Li ZG (李志刚) (2006). Advances in plant seed dimorphism (or polymorphism) research. Acta Ecologica Sinica (生态学报), 26, 1234-1242. (in Chinese with English abstract)
[42] Mandák B (1997). Seed heteromorphism and the life cycle of plants: a literature review. Preslia, Praha, 69, 129-159.
[43] Mandák B, Py?ek P (1999). Effects of plant density and nutrient levels on fruit polymorphism in Atriplex sagittata. Oecologia, 119, 63-72.
[44] Mandák B, Py?ek P (2001). Fruit dispersal and seed banks in Atriplex sagittata: the role of heterocarpy. Journal of Ecology, 89, 159-165.
[45] Maxwell CD, Zobel A, Woodfine D (1994). Somatic polymorphism in the achenes of Tragopogon dubius. Canadian Journal of Botany, 72, 1282-1288.
[46] McDonough WT (1975). Germination polymorphism in Grindelia squarrosa (Pursh) Dunal. Northwest Science, 49, 190-200.
[47] McEvoy PB (1984). Dormancy and dispersal in dimorphic achenes of tansy ragwort, Senecio jacobaea L. (Compositae). Oecologia, 61, 160-168.
[48] McGinley MA (1989). Within and among plant variation in seed mass and pappus size in Tragopogon dubious. Canadian Journal of Botany, 67, 1298-1304.
[49] McNamara J, Quinn JA (1977). Resource allocation and reproduction in populations of Amphicarpum purshii (Gramineae). American Journal Botany, 64, 17-23.
[50] Negbi M, Tamari B (1963). Germination of chlorophyllous and achlorophyllous seeds of Salsola volkensii and Aellenia autrani. Israel Journal of Botany, 12, 124-135.
[51] Philipupillai J, Ungar IA (1984). The effect of seed dimorphism on the germination and survival of Salicornia europaea L. populations. American Journal of Botany, 71, 542-549.
[52] Plitmann U (1986). Alternative modes in dispersal strategies with an emphasis on herbaceous plants of the Middle East. Proceedings of the Royal Society of Edinburg, 89, 193-202.
[53] Pollux BJA, Ouborg NJ, van Groenendael JM, Klaassen M (2007). Consequences of intraspecific seed-size variation in Sparganium emersum for dispersal by fish. Functional Ecology, 21, 1084-1091.
[54] Pollux BJA, Verbruggen E, van Groenendael JM, Ouborg NJ (2009). Intraspecific variation of seed floating ability in Sparganium emersum suggests a bimodal dispersal strategy. Aquatic Botany, 90, 199-203.
[55] Qu RM (曲荣明) (2004). Fruit Polymorphyism with Reference to Its Ecological Adaptive Mechanisms on 2 Species of Ephemeral Plants (两种短命植物的果实多态性及其生态适应机制). MS dissertation, College of Forestry, Xinjiang Agricultural University, ürümqi. 1-15. (in Chinese)
[56] Redondo-Gómez S, Mateos-Naranjo E, Cambrollé J, Luque T, Enrique Figueroa M, Davy AJ (2008). Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens. Annals of Botany, 102, 103-112.
[57] Ruiz de Clavijo E (1984). Heterocarpy and seed polymorphism in Ceratocapnos heterocarpa (Fumariaceae). International Journal of Plant Sciences, 155, 196-202.
[58] Ruiz de Clavijo E, Jiménez MJ (1998). The influence of achene type and plant density on growth and biomass allocation in the heterocarpic annual Catananche lutea (Asteraceae). International Journal of Plant Sciences, 159, 637-647.
[59] Ruiz de Clavijo E (2002). Role of within-individual variation in capitulum size and achene mass in the adaptation of the annual Centaurea eriophora to varying water supply in the Mediterranean environment. Annals of Botany, 90, 279-286.
[60] Ruiz de Clavijo E (2005). The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae). Acta Oecologica, 28, 119-126.
[61] Sadeh A, Guterman H, Gersani M, Ovadia O (2009). Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evolutionary Ecology, 23, 373-388.
[62] Schnee BK, Waller DM (1986). Reproductive behavior of Amphicarpaea bracteata (Leguminosae), an amphicarpic annual. American Journal Botany, 73, 376-386.
[63] Silvertown JW (1984). Phenotypic variety in seed germination behavior: the ontogeny and evolution of somatic polymorphism in seeds. The American Naturalist, 124, 1-16.
[64] Soliman MI (2003). Genetic diversity of achene heteromorphism in Egyptian Calendula micrantha Tineo et Guss. Asian Journal of Plant Sciences, 2, 782-789.
[65] Sorensen AE (1978). Somatic polymorphism and seed dispersal. Nature, 276, 174-176.
[66] Sun HZ (孙华之), Tan DY (谭敦炎), Qu RM (曲荣明) (2008). Characteristics of heteromorphic achenes of Garhadiolus papposus, an ephemeral Asteraceae species, with reference to their adaptions to desert environment. Biodiversity Science (生物多样性), 16, 353-361. (in Chinese with English abstract)
[67] Takeno K, Yamaguchi H (1991). Diversity in seed germination behavior in relation to heterocarpy in Salsola komarovii Iljin. The Botanical Magazine, 104, 207-215.
[68] Tanowitz BD, Salopek PF, Mahall BE (1987). Differential germination of ray and disc achenes in Hemizonia increscens (Asteraceae). American Journal of Botany, 74, 303-312.
[69] Telenius A, Torstensson P (1989). The seed dimorphism of Spergularia marina in relation to dispersal by wind and water. Oecologia, 80, 206-210.
[70] Trapp EJ, Hendrix SD (1988). Consequences of a mixed reproductive system in the hog peanut, Amphicarpaea bracteata (Fabaceae). Oecologia, 75, 285-290.
[71] Ungar IA (1979). Seed dimorphism in Salicornia europaea L. Botanical Gazette, 140, 102-108.
[72] Venable DL (1985a). The evolutionary ecology of seed heteromorphism. The American Naturalist, 126, 577-595.
[73] Venable DL (1985b). Ecology of achene dimorphism in Heterotheca latifolia. III. Consequences of varied water availability. Journal of Ecology, 73, 757-763.
[74] Venable DL, Levin DA (1985a). Ecology of achene dimorphism in Heterotheca latifolia. I. Achene structure, germination and dispersal. Journal of Ecology, 73, 133-145.
[75] Venable DL, Levin DA (1985b). Ecology of achene dimorphism in Heterotheca latifolia. II. Demographic variation within populations. Journal of Ecology, 73, 743-755.
[76] Venable DL, Búrquez A, Corral G, Morales E, Espinosa F (1987). The ecology of seed heteromorphism in Heterosperma pinnatum in central Mexico. Ecology, 68, 65-76.
[77] Venable DL, Brown JS (1988). The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments. The American Naturalist, 131, 360-384.
[78] Venable DL, Dyreson E, Morales E (1995). Population dynamic consequences and evolution of seed traits of Heterosperma pinnatum (Aateraceae). American Journal of Botany, 82, 410-420.
[79] Walker SR, Evenson JP (1985). Biology of Commelina benghalensis L. in south-eastern Queensland. 2. Seed dormancy, germination and seed production. Weed Research, 25, 239-244.
[80] Wang HF (王宏飞), Wei Y (魏岩) (2007). Seed polymorphism and fruit-set patterns of Salsola affinis. Biodiversity Science (生物多样性), 15, 419-424. (in Chinese with English abstract)
[81] Wang HF (王宏飞), Wei Y (魏岩), Huang ZY (黄振英) (2007). Seed polymorphism and germination behavior of Salsola bracchita, a dominant desert annual inhabiting Junggar Basin of Xinjiang, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 1046-1053. (in Chinese with English abstract)
[82] Wang L, Huang ZY, Baskin CC, Baskin JM, Dong M (2008). Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Annals of Botany, 102, 757-769.
[83] Wei Y (魏岩), Yan C (严成), Yin LK (尹林克) (2003). Seed polymorphism and ecotype of Atriplex aucheri. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 23, 485-487. (in Chinese with English abstract)
[84] Wei Y, Dong M, Huang ZY (2007). Seed polymorphism, dormancy, and germination of Salsola affinis (Chenopodiaceae), a dominant desert annual inhabiting the Junggar Basin of Xinjiang, China. Australian Journal of Botany, 55, 1-7.
[85] Wei Y, Dong M, Huang ZY, Tan DY (2008). Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora, 203, 134-140.
[86] Weiss PW (1980). Germination, reproduction and interference in the amphicarpic annual Emex spinosa (L.) Campd. Oecologia, 45, 244-251.
[87] Wertis BA, Ungar IA (1986). Seed demography and seedling survival in a population of Atriplex triangularis Willd. The American Midland Naturalist, 116, 152-162.
[88] Williams JT, Harper JL (1965). Seed polymorphism and germination. I. The influence of nitrates and low temperatures on the germination of Chenopodium album. Weed Research, 5, 141-15.
[89] Wu XL (吴雪莲), Tan DY (谭敦炎) (2007). Floral characters and breeding systems in the dimorphic annual plant Diptychocarpus strictus (Cruciferae). Acta Phytotaxonomica Sinica (植物分类学报), 45, 538-550. (in Chinese with English abstract)
[90] Yu X (于晓) (2008). Seed Polymorphism and Its Ecological Adaptive Strategy of Halogeton glomeratus in Xinjiang (盐生草的种子多形性及其生态适应对策). MS dissertation, College of Forestry, Xinjiang Agricultural University, ürümqi. 13-15. (in Chinese)
[91] Zhang Y, Yang J, Rao GY (2006). Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii Benth. (Leguminosae: Papilionoideae), an amphicarpic species. International Journal of Plant Sciences, 167, 943-949.
文章导航

/

[an error occurred while processing this directive]