[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

氮磷添加对昆仑山北坡高山草地N2O排放的影响

展开
  • 1 中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室, 乌鲁木齐 830011
    2 新疆策勒荒漠草地生态系统国家野外科学观测研究站, 新疆策勒 848300
    3 中国科学院干旱区生物地理与生物资源重点实验室, 乌鲁木齐 830011
    4 中国科学院大学, 北京 100049
    5 新疆策勒县草原工作站, 新疆策勒 848300

收稿日期: 2018-10-30

  录用日期: 2019-02-01

  网络出版日期: 2019-06-04

基金资助

国家自然科学基金(31570002);国家自然科学基金(31870499)

Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China

Expand
  • 1 Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, ürümqi 830011, China
    2 Cele National Station of Observation and Research for Desert-Grassland Ecosystems in Xinjiang, Cele, Xinjiang 848300, China
    3 Key Laboratory of Biogeography and Bio-resource in Arid Zone, Chinese Academy of Sciences, ürümqi 830011, China
    4 University of Chinese Academy of Sciences, Beijing 100049, China
    5 Cele Grassland Management Station in Xinjiang, Cele, Xinjiang 848300, China

Received date: 2018-10-30

  Accepted date: 2019-02-01

  Online published: 2019-06-04

Supported by

Supported by the National Natural Science Foundation of China(31570002);Supported by the National Natural Science Foundation of China(31870499)

摘要

氮(N)、磷(P)等养分添加是提高草地生态系统生产力的重要策略, 但其对土壤氧化亚氮(N2O)排放的影响尚不明确。该研究以南疆昆仑山北坡高山草地为研究对象, 设置氮添加、磷添加、氮磷交互以及不施肥(CK) 4个处理, 采用静态箱-气象色谱法连续监测2017年生长季草地的N2O排放, 研究不同氮、磷添加处理下的N2O排放特征, 并利用Pearson相关分析对影响N2O排放的主要环境因子进行定性识别及定量解析。结果表明: 氮添加处理与氮磷交互处理在施肥后约3周引起显著的N2O排放峰, 分别为42.3和15.4 g N·hm -2·d -1。与其他处理相比, 氮添加处理生长季N2O排放通量显著增加了1.8-3.2倍, 而磷添加以及氮磷交互处理与CK之间没有显著差异。Pearson相关分析结果表明: N2O排放与微生物生物量碳呈负相关关系, 与溶解性有机碳含量、pH值呈正相关关系, 而与其他环境因子关系不显著。以上结果表明, 与单施氮肥相比, 在该地区草场采用氮磷混施可显著减少N2O的排放。

本文引用格式

曹登超, 高霄鹏, 李磊, 桂东伟, 曾凡江, 匡文浓, 尹明远, 李言言, 艾力•甫拉提 . 氮磷添加对昆仑山北坡高山草地N2O排放的影响[J]. 植物生态学报, 2019 , 43(2) : 165 -173 . DOI: 10.17521/cjpe.2018.0267

Abstract

<i>Aims</i>

Nutrient additions such as nitrogen and phosphorus are important strategies to improve the productivity of the grassland ecosystem. However, their effect on soil nitrous oxide (N2O) emissions remains unclear.

<i>Methods</i>

A field study was conducted in an alpine grassland located in the north slope of Kunlun Mountains in Southern Xinjiang. Four treatments included nitrogen addition alone (N), phosphorus addition alone (P), mixture of nitrogen and phosphorus additions (N + P) and an unfertilized control (CK). Gas samples were collected and analyzed using the static chamber chromatography methodology during the 2017 growing season. Treatment effects on the characteristics of N2O emissions from grassland soil were thoroughly investigated. Pearson correlation analysis was used to identify and quantify the influence of environmental variables on soil N2O emissions.

<i>Important findings</i>

The results showed that N and (N + P) treatments induced N2O flux peaks after three weeks of fertilizer addition, with the maximum daily N2O flux rates of 42.3 and 15.4 g N·hm -2·d -1, respectively. The N treatment significantly increased growing season cumulative N2O emissions by 1.8 to 3.2 times compared to P treatment, (N + P) treatment and CK, and there were no significant differences between the three treatments. Pearson correlation analysis showed that daily N2O flux rate was correlated negatively with soil microbial biomass carbon, and positively with soil pH and dissolved organic carbon. There was no significant correlation between daily N2O flux rate and other environmental variables. These results suggest that simultaneous addition of nitrogen and phosphorus nutrients can significantly reduce soil N2O emission compared to N treatment for the alpine grassland in this region.

[an error occurred while processing this directive]

参考文献

[1] Baral BR, Kuyper TW, van Groenigen JW ( 2013). Liebig’s law of the minimum applied to a greenhouse gas: Alleviation of P-limitation reduces soil N2O emission. Plant and Soil, 374, 539-548.
[2] Bouwman AF, Boumans LJM, Batjes NH ( 2002). Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16, 1080. DOI: 10.1029/2001GB001812.
[3] Du R, Zhou YG, Wang GC, Lü DR, Wan XW ( 2003). The effect of soil water on grassland N2O releasing process in typical temperate zones. Nature Science Advance , 13, 939-945.
[3] [ 杜睿, 周宇光, 王庚辰, 吕达仁, 万小伟 ( 2003). 土壤水分对温带典型草地N2O排放过程的影响. 自然科学进展, 13, 939-945.]
[4] Goulden ML, McMillan AM, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP ( 2011). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17, 855-871.
[5] Granli T, Bockman OC ( 1994). Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences, 12, 7-128.
[6] Huang SH, Jiang WW, Lü J, Cao JM ( 2005). Influence of nitrogen and phosphorus fertilizers on N2O emissions in rice fields. China Environmental Science , 25, 540-543.
[6] [ 黄树辉, 蒋文伟, 吕军, 曹建明 ( 2005). 氮肥和磷肥对稻田N2O排放的影响. 中国环境科学, 25, 540-543.]
[7] IPCC (Intergovernmental Panel on Climate Change) ( 2007). Climate Change 2007: The Physical Science Basis. Cambridge University Press, New York, USA.
[8] Kuang WN, Gao XP, Gui DW, Tenuta M, Flaten DN, Yin MY, Zeng FJ ( 2018). Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crops Research, 229, 17-26.
[9] Li C, Frolking S, Frolking TA ( 1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 97, 9759-9776.
[10] Linn DM, Doran JW ( 1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267-1272.
[11] Liu YT, Li YE, Wan YF, Gao QZ, Qin XB, Chen DL ( 2011). Nitrous Oxide emissions from spring-maize field under the application of different nitrogen and phosphorus fertilizers. Journal of Agro-Environment Science , 30, 1468-1475.
[11] [ 刘运通, 李玉娥, 万运帆, 高清竹, 秦晓波, 陈德立 ( 2011). 不同氮磷肥施用对春玉米农田N2O排放的影响. 农业环境科学学报, 30, 1468-1475.]
[12] Mehnaz KR, Dijkstra FA ( 2016). Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma, 284, 34-41.
[13] Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J ( 2014). Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring. Biology and Fertility of Soils, 50, 45-51.
[14] Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A ( 2010). Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Science and Plant Nutrition, 56, 782-788.
[15] Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A ( 2013). Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. Biology and Fertility of Soils, 49, 13-21.
[16] Mori T, Wachrinrat C, Staporn D, Meunpong P, Suebsai W, Matsubara K, Boonsri K, Lumban W, Kuawong M, Phukdee T, Srifai J, Boonman K ( 2017). Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand. Agriculture and Natural Resources, 51, 91-95.
[17] Pedersen AR ( 2011). HMR: Flux Estimation with Static Chamber Data. . Cited: 2012-04-10.
[18] Ravishankara AR, Portmann RW ( 2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century. Science, 326, 123-125.
[19] Tenuta M, Mkhabela M, Tremorin D, Coppi L, Phipps G, Flaten D, Ominski K ( 2010). Nitrous oxide and methane emission from a coarse-texture grassland soil receiving hog slurry. Agriculture, Ecosystems and Environment, 138, 35-43.
[20] Ussiri D, Lal R ( 2013). Soil Emission of Nitrous Oxide and Its Mitigation. Springer, Dordrecht, the Netherlands. 63-97.
[21] Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
[22] Wang C, Zhu F, Zhao X, Dong K ( 2014 a). The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of Loess Plateau of Northern China. Geoderma, 213, 419-425.
[23] Wang DX, Gao YH, Wang P, Zeng XY ( 2016). Responses of CO2 and N2O emissions to carbon and phosphorus additions in two contrasting alpine meadow soils on the Qinghai-Tibetan Plateau. Fresenius Environmental Bulletin, 25, 4401-4408.
[24] Wang F, Shi G, Nicholas O, Yao B, Ji M, Wang W, Ma Z, Zhou H, Zhao X ( 2018). Ecosystem nitrogen retention is regulated by plant community trait interactions with nutrient status in an alpine meadow. Journal of Ecology, 106, 1570-1581.
[25] Wang FM, Li J, Wang XL, Zhang W, Zou B, Neher DA, Li Z ( 2014 b). Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615. DOI: 10.1038/srep05615.
[26] Wang GQ, LI F, Peng YF, Chen YL, Han TF, Yang GB, Liu L, Zhou GY, Yang YH ( 2018). Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe. Chinese Journal of Plant Ecology , 42, 105-115.
[26] [ 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合 ( 2018). 土壤含水量调控高寒草原生态系统N2O排放对增温的响应. 植物生态学报, 42, 105-115.]
[27] Wang GS ( 2013). Effect of Nutrition Addition, Altered Precipitation and Temperature Regimes on Greenhouse Gas Emissions in an Alpine Grassland on the Tibetan Plateau. Master degree dissertation, Northwest Plateau Institute of biology, Chinese Academy of Sciences, Xining. 20-21.
[27] [ 王广帅 ( 2013). 养分、水热调控对青藏高原高寒草地温室气体排放的影响. 硕士学位论文, 中国科学院西北高原生物所, 西宁. 20-21.]
[28] Wei D, Xu R, Wang YH, Yao TD ( 2011). CH4 , N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co region of Tibetan Plateau. Acta Agrestia Sinica , 19, 412-419.
[28] [ 魏达, 旭日, 王迎红, 姚檀栋 ( 2011). 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究. 草地学报, 19, 412-419.]
[29] Yan YL, Ganjurjav H, Hu GZ, Liang Y, Li Y, He SC, Danjiu LB, Yang J, Gao QZ ( 2018). Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau. Agriculture Ecosystems and Environment, 265, 45-53.
[30] Yang HY, Zhang T, Huang Y, Duan L ( 2016). Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environmental Science, 37, 1900-1907.
[30] [ 杨涵越, 张婷, 黄永梅, 段雷 ( 2016). 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 37, 1900-1907.]
[31] Zhang LH, Huo YW, Guo DF, Wang QB, Bao Y, Li LH ( 2014). Effects of multi-nutrient additions on GHG fluxes in a temperate grassland of Northern China. Ecosystems, 17, 657-672.
[32] Zhao Y, Yang B, Li M, Xiao R, Rao K, Wang J, Zhang T, Guo J ( 2019). Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow. Science of the Total Environment, 654, 863-871.
文章导航

/

[an error occurred while processing this directive]