[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

亚热带常绿阔叶林89种木本植物一级根直径的变异

展开
  • 1福建师范大学地理科学学院/福建师范大学湿润亚热带山地生态国家重点实验室培育基地, 福州 350007
    2江苏省木渎高级中学, 江苏苏州 215101

收稿日期: 2019-07-19

  录用日期: 2019-10-22

  网络出版日期: 2020-02-24

基金资助

国家自然科学基金项目(31830014);国家自然科学基金项目(31422012)

Variations in the first-order root diameter in 89 woody species in a subtropical evergreen broadleaved forest

Expand
  • 1School of Geographical Sciences, Fujian Normal University/State Key Laboratory for Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
    2 Mudu High School of Jiangsu, Suzhou, Jiangsu 215101, China

Received date: 2019-07-19

  Accepted date: 2019-10-22

  Online published: 2020-02-24

Supported by

Supported by the National Natural Science Foundation of China(31830014);Supported by the National Natural Science Foundation of China(31422012)

摘要

细根直径变异是根系形态变化的常见形式, 对细根变异研究具有重要意义。为了揭示亚热带天然常绿阔叶林一级根直径变异特征, 该研究选取福建省建瓯市万木林自然保护区天然常绿阔叶林的89种木本植物进行研究。每个树种选取胸径或地径相近的3株, 用完整土块法进行根系取样, 用根序法对根系进行分级。采用单因素方差分析分别检验叶片习性(常绿、落叶树种)、生长型(乔木、小乔木或灌木、灌木)和主要科之间一级根直径的差异; 通过计算Blomberg’s K值以检验系统发育信号; 利用线性回归方法, 分析科水平的分化时间与一级根直径的相关性。结果显示: 1)亚热带常绿阔叶林一级根直径变异系数为23%; 2)常绿树种与落叶树种一级根直径没有显著差异, 但灌木一级根直径显著小于小乔木或灌木、乔木; 3)一级根直径系统发育信号不显著, 科水平分化时间与一级根直径呈正相关关系。研究结果表明, 亚热带天然常绿阔叶林木本植物一级根直径变异受系统发育影响较小, 但受生长型影响, 表现为一定的趋同适应。

本文引用格式

王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学 . 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019 , 43(11) : 969 -978 . DOI: 10.17521/cjpe.2019.0189

Abstract

Aims The diameter variation of fine roots plays an important role for the study of fine root variation. Phylogeny is a significant factor. In order to examine the diameter variation of the first-order roots in subtropical evergreen broadleaved forests, we investigated 89 woody plant species from a natural evergreen broadleaved forest in Wanmulin Nature Reserve, Jianou, Fujian Province.Methods We selected three trees of each species with similar diameters at breast height or ground diameters, and sampled the root system with intact soil block method. We classed fine root with root order method. One-way ANOVA was used to test the first-order root diameter difference among the life forms (evergreen and deciduous trees), growth forms (tree, semi-tree or shrub and shrub) and the taxonomic classes. Then the Blomberg’s K value was calculated to determine phylogenetic signal. We analyzed the correlation between divergence time and first-order root diameter by using linear regression from family perspective.Important findings 1) The coefficient of variation for the first-order root diameter was 23% in this subtropical evergreen broad-leaved forest. 2) There were no differences in first-order root diameter between evergreen and deciduous trees, but that of the shrubs was significantly different from that of the semi-tree, shrub and tree species. 3) Phylogenetic signal in first-order root diameter was not significant. In addition, the divergence time was positively correlated with the first-order root diameter in the family-level. These results showed that, the variations for first-order root diameter in the tested subtropical woody species was little affected by phylogenetic structure.

[an error occurred while processing this directive]

参考文献

[1] Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
[2] Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang QY, Zmarzty S ( 2009). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
[3] Chang WJ, Guo DL ( 2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese version), 32, 1248-1257.
[3] [ 常文静, 郭大立 ( 2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.]
[4] Chen WL, Zeng H, Eissenstat DM, Guo DL ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
[5] Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42.
[6] Fitter AH ( 1985). Functional significance of root morphology and root system architecture. Ecological Interactions in Soil, 4, 87-106.
[7] Geng ZZ ( 2018). The Variability of the First-order Root Functional Traits of Main Woody Plants in Three Plots in Northeast China. Master degree dissertation, Shenyang Agricultural University, Shenyang.
[7] [ 耿珍珍 ( 2018). 东北三地主要木本植物1级根功能性状变异特征. 硕士学位论文, 沈阳农业大学, 沈阳.]
[8] Gill RA, Jackson RB ( 2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
[9] Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ ( 2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425.
[10] Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
[11] Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ ( 2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
[12] Hu RZ, Du ZQ, Liu S, Shi JW ( 2016). Fine root morphology characteristics of Larix principis-rupprechtii along an elevation gradient. Chinese Journal of Ecology, 35, 1248-1253.
[12] [ 胡瑞芝, 杜自强, 刘爽, 史建伟 ( 2016). 不同海拔华北落叶松细根形态特征. 生态学杂志, 35, 1248-1253.]
[13] Huang D ( 2010). Comparation of Fine Root Morphology of Twenty-one Tree Species in Subtropical Forest in Hubei Province. Master degree dissertation, Huazhong Agricultural University, Wuhan.
[13] [ 黄冬 ( 2010). 湖北省21个典型树种细根形态结构比较研究. 硕士学位论文, 华中农业大学, 武汉.]
[14] Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
[15] Jia QQ, Liu QJ, Liang Y ( 2016). Fine root morphology of three common conifer tree species. Journal of Central South University of Forestry & Technology, 36(2), 33-39.
[15] [ 贾全全, 刘琪璟, 梁宇 ( 2016). 三种常见针叶树种的细根形态比较. 中南林业科技大学学报, 36(2), 33-39.]
[16] Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
[17] Kong DL, Wu HF, Wang M, Simmons M, Lü XT, Yu Q, Han XG ( 2010). Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336, 209-217.
[18] Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
[19] Liu C, Xiang WH, Zou LM, Lei PF, Zeng YL, Ouyang S, Deng XW, Fang X, Liu ZL, Peng CH ( 2019). Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil, 436, 347-364.
[20] Long YQ, Kong DL, Chen ZX, Zeng H ( 2013). Variation of the linkage of root function with root branch order. PLOS ONE, e57153. DOI: 10.1371/journal.pone.0057153.
[21] Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
[22] Norby RJ, Jackson RB ( 2000). Root dynamics and global change: Seeking an ecosystem perspective. New Phytologist, 147, 3-12.
[23] Pregitzer KS ( 2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270.
[24] Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine north American trees. Ecological Monographs, 72, 293-309.
[25] Shi W ( 2008). Comparison of Root Morphology and Leaf Morphology of Twenty Hardwood Species in Maoershan Natural Secondary Forest. Master degree dissertation, Northeast Forestry University, Harbin.
[25] [ 师伟 ( 2008). 帽儿山天然次生林20个阔叶树种细根形态与叶形态的比较研究. 硕士学位论文, 东北林业大学, 哈尔滨.]
[26] St John TV ( 1980). Root size, root hairs and mycorrhizal infection: A re-examination of Baylis’s hypothesis with tropical trees. New Phytologist, 84, 483-487.
[27] Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
[28] Valverde-Barrantes OJ, Smemo KA, Blackwood CB ( 2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807.
[29] Wikstr?m N, Savolainen V, Chase MW ( 2001). Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 268, 2211-2220.
[30] Xu Y ( 2011). Fine Root Morphology, Anatomy and Tissue Nitrogen and Carbon of the First Five Order Roots in Twenty-seven Chinese Tropical Hardwood Tree Species. Master degree dissertation, Northeast Forestry University, Harbin.
[30] [ 许旸 ( 2011). 中国热带27个阔叶树种不同根序细根的形态特征、解剖结构和碳氮研究. 硕士学位论文, 东北林业大学, 哈尔滨.]
[31] Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF ( 2007). Effects of fertilization on fine root diameter, root length, and specific root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 18, 957-962.
[31] [ 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富 ( 2007). 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 18, 957-962.]
[32] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
[33] Zhou M, Bai WM, Zhang YS, Zhang WH ( 2018). Multi- dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. Journal of Ecology, 106, 2320-2331.
[34] Zhu JM, Jiang ZL, Zheng QR, Jiang W ( 1997). A study on the species diversity in the forest community of Wanmulin Nature Reserve, Fujian Province. Journal of Nanjing Forestry University (Natural Sciences), 21, 11-16.
[34] [ 朱锦懋, 姜志林, 郑群瑞, 蒋伟 ( 1997). 福建万木林自然保护区森林群落物种多样性研究. 南京林业大学学报(自然科学版), 21, 11-16.]
[35] Zhu WR, Wang QT, Liu ML, Wang HT, Wang YP, Zhang GC, Li CR ( 2015). Interactive effects of phenolic acid and nitrogen on morphological traits of poplar ( Populus × euramericana ‘Neva’) fine roots. Chinese Journal of Plant Ecology, 39, 1198-1208.
[35] [ 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣 ( 2015). 酚酸和氮素交互作用下欧美杨107细根形态特征. 植物生态学报, 39, 1198-1208.]
[36] Zobel RW, Kinraide TB, Baligar VC ( 2007). Fine root diameters can change in response to changes in nutrient concentrations. Plant and Soil, 297, 243-254.
[37] Zou B, Cai F, Zheng JM, Dai W ( 2015). Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest. Journal of Northeast Forestry University, 43(3), 18-22.
[37] [ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015). 亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异. 东北林业大学学报, 43(3), 18-22.]
[38] Zou LM ( 2015). Root Identification and Variation in Architecture of Fine Roots of Subtropical Tree Species in Southern China. Master degree dissertation, Central South University of Forestry and Technology, Changsha.
[38] [ 邹丽梅 ( 2015). 亚热带6个树种细根形态比较与根序分级构型研究. 硕士学位论文, 中南林业科技大学, 长沙.]
文章导航

/

[an error occurred while processing this directive]