[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

降水量变化对藏北高寒草地养分限制的影响

展开
  • 1中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101
    2中国科学院大学, 北京 100049
    3国家林业和草原局经济发展研究中心, 北京 100714
*石培礼:ORCID: 0000-0002-1120-0003(shipl@igsnrr.ac.cn)

收稿日期: 2020-05-08

  录用日期: 2020-08-10

  网络出版日期: 2020-11-02

基金资助

国家重点研发计划(2017YFA0604802);国家重点研发计划(2016YFC0501803);国家自然科学基金(31870406);国家自然科学基金(41703079);第二次青藏高原综合科学考察研究项目(2019QZKK0302)

Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau

Expand
  • 1Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Economics and Development Research Center, National Forestry and Grassland Administration, Beijing 100714, China

Received date: 2020-05-08

  Accepted date: 2020-08-10

  Online published: 2020-11-02

Supported by

the National Key R&D Program of China(2017YFA0604802);the National Key R&D Program of China(2016YFC0501803);National Natural Science Foundation of China(31870406);National Natural Science Foundation of China(41703079);the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK0302)

摘要

生态系统净初级生产养分限制的模式是现代生态学关注的重要问题。养分的可利用性是草原生态系统生产力动态变化的关键决定因素, 但土壤养分可利用性与整个生态系统中养分限制之间的关系尚不清楚。该研究通过在藏北降水梯度上4种类型高寒草地(从东到西依次是高寒草甸、高寒草甸草原、高寒草原和高寒荒漠草原)设置氮磷养分添加试验, 系统研究氮磷养分添加对不同类型高寒草地的影响, 并探讨降水梯度上高寒草地的氮磷限制模式。结果表明: (1)氮磷添加对不同高寒草地的影响存在差异: 氮添加显著提高了高寒草甸和高寒草甸草原地上生产力, 而对高寒草原和高寒荒漠草原无影响; 单独磷添加对4种高寒草地均无显著影响, 而氮磷添加对4种高寒草地地上生产力均有促进作用。(2)通过计算氮磷共同限制指数发现: 随着降水量减少, 高寒草地氮限制指数从1.18逐渐降低到0.52-0.64, 养分限制模式从氮限制过渡到氮磷共同限制; 磷限制指数在高寒草甸草原和高寒草原为负值, 说明单独磷添加对高寒草甸的生产力有负向作用, 高寒草甸主要受氮限制; 高寒草甸草原介于氮限制与氮磷限制之间, 受到氮磷共同限制, 单独磷添加有负向作用; 高寒荒漠草原受到氮磷共同限制。研究表明, 高寒草地氮磷限制模式存在环境梯度上的递变规律, 随着降水量减少, 高寒草地养分限制模式从氮限制逐渐过渡到氮磷共同限制。由此推断, 未来气候变化条件下氮沉降增加对不同类型高寒草地的影响可能存在差异。同时, 利用养分添加恢复不同类型退化高寒草地时也应将氮磷限制模式的差异考虑进去。

本文引用格式

宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁 . 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021 , 45(5) : 444 -455 . DOI: 10.17521/cjpe.2020.0135

Abstract

Aims Understanding the mode of nutrient limitation on ecosystem net primary production is an important issue of modern ecology. Nutrient availability is a key determinant of ecosystem dynamics, but the relationship between soil resource availability and ecosystem nutrient limitation is still unclear.
Methods A series of nitrogen and phosphorus nutrient addition experiments were set up in four types of alpine grasslands (alpine meadow, alpine meadow-steppe, alpine steppe and alpine desert-steppe) along the precipitation gradient on the Northern Xizang, to systematically study the effects of nitrogen and phosphorus addition on different types of alpine grasslands, and to explore the nitrogen and phosphorus limitation models of different alpine grasslands.
Important findings The results showed that: (1) The effects of nitrogen and phosphorus addition on different alpine grasslands varied. Nitrogen addition significantly increased the aboveground biomass of alpine meadows and alpine meadow grasslands, but had no effect on alpine meadows and alpine desert grasslands. The addition of phosphorus alone had no significant effect on the four alpine grasslands, while the addition of nitrogen and phosphorus had a promoting effect on the aboveground biomass of the four alpine grasslands. (2) With the decrease of precipitation, the nitrogen limitation index of the alpine grasslands gradually decreased from 1.18 to 0.52-0.64, and the nutrient limitation mode transitioned from nitrogen limitation to co-limitation by nitrogen and phosphorus; the phosphorus limitation index was negative in the alpine meadow-steppe and alpine steppe, indicating that phosphorus addition alone has side effects on these two grassland types. These results suggest that alpine meadow is mainly limited by nitrogen availability, and phosphorus addition alone has side effects; the alpine meadow-steppe is between the nitrogen limit and the joint nitrogen and phosphorus limitation, and phosphorus addition alone also has side effects; the alpine steppe is limited by both nitrogen and phosphorus availability, and the addition of phosphorus has side effects; the alpine desert-steppe is jointly limited by nitrogen and phosphorus availability. These results show that nutrient limitation mode transits from nitrogen limitation to nitrogen and phosphorus co-limitation with the decrease of precipitation. This study implies that the impacts of increasing nitrogen deposition under future climate change on different types of alpine grasslands may be different. Additionally, the differences in nitrogen and phosphorus limitation mode should also be taken into consideration when nutrient addition is used to restore different types of degraded alpine grasslands.

[an error occurred while processing this directive]

参考文献

[1] Bowman WD,Theodose TA,Schardt JC,Conant RT(1993).Constraints of nutrient availability on primary production in two alpine tundra communities.Ecology,74, 2085-2097.
[2] Brant AN,Chen HYH(2015).Patterns and mechanisms of nutrient resorption in plants.Critical Reviews in Plant Sciences,34, 471-486.
[3] Chapin III FS,Matson PA(2011).Principles of Terrestrial Ecosystem Ecology. 2nd ed.Springer-Verlag,New York.
[4] Clark CM,Tilman D(2008).Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature,451, 712-715.
[5] Craine JM,Jackson RD(2010).Plant nitrogen and phosphorus limitation in 98 North American grassland soils.Plant and Soil,334, 73-84.
[6] Craine JM,Morrow C,Stock WD(2008).Nutrient concentration ratios and co-limitation in South African grasslands.New Phytologist,179, 829-836.
[7] Crowley KF,McNeil BE,Lovett GM,Canham CD,Driscoll CT,Rustad LE,Denny E,Hallett RA,Arthur MA,Boggs JL,Goodale CL,Kahl JS,McNulty SG,Ollinger SV,Pardo LH,Schaberg PG,Stoddard JL,Weand MP,Weathers KC(2012).Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the Northeastern United States?Ecosystems,15, 940-957.
[8] Du EZ,Terrer C,Pellegrini AFA,Ahlstrom A,van Lissa CJ,Zhao X,Xia N,Wu XH,Jackson RB(2020).Global patterns of terrestrial nitrogen and phosphorus limitation.Nature Geoscience,13, 221-226.
[9] Elser JJ,Bracken MES,Cleland EE,Gruner DS,Harpole WS,Hillebrand H,Ngai JT,Seabloom EW,Shurin JB,Smith JE(2007).Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters,10, 1135-1142.
[10] Galloway JN,Dentener FJ,Capone DG,Boyer EW,Howarth RW,Seitzinger SP,Asner GP,Cleveland CC,Green PA,Holland EA,Karl DM,Michaels AF,Porter JH,Townsend AR,Vöosmarty CJ(2004).Nitrogen cycles: past, present, and future.Biogeochemistry,70, 153-226.
[11] Gao QZ,Li YE,Wan YF(2006).Grassland degradation in Northern Tibet based on remote sensing data.Journal of Geographical Sciences,16, 165-173.
[12] Gao YH,Cooper DJ,Ma XX(2016).Phosphorus additions have no impact on plant biomass or soil nitrogen in an alpine meadow on the Qinghai-Tibetan Plateau, China.Applied Soil Ecology,106, 18-23.
[13] Gao YH,Cooper DJ,Zeng XY(2018).Nitrogen, not phosphorus, enrichment controls biomass production in alpine wetlands on the Tibetan Plateau, China.Ecological Engineering,116, 31-34.
[14] Gleeson SK,Tilman D(1992).Plant allocation and the multiple limitation hypothesis.The American Naturalist,139, 1322-1343.
[15] Gusewell S(2004).N:P ratios in terrestrial plants: variation and functional significance.New Phytologist,164, 243-266.
[16] Han WX,Tang LY,Chen YH,Fang JY(2013).Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants.PLOS ONE,8, e83366. DOI:10.1371/journal.pone.0083366.
[17] Harpole WS,Ngai JT,Cleland EE,Seabloom EW,Borer ET,Bracken MES,Elser JJ,Gruner DS,Hillebrand H,Shurin JB,Smith JE(2011).Nutrient co-limitation of primary producer communities.Ecology Letters,14, 852-862.
[18] Hautier Y,Niklaus PA,Hector A(2009).Competition for light causes plant biodiversity loss after eutrophication.Science,324, 636-638.
[19] Huang J,Wang GF,An SZ,Yun J,Li H,Zhang RH(2009).Effect of nitrogen fertilization on the vegetation structure and biomass of degraded meadow and soil fertility.Pratacultural Science,26, 75-78.
[19] [黄军,王高峰,安沙舟,贠静,李海,张荣华(2009).施氮对退化草甸植被结构和生物量及土壤肥力的影响.草业科学,26, 75-78.]
[20] Lamarque JF,Hess P,Emmons L,Buja L,Washington W,Granier C(2005).Tropospheric ozone evolution between 1890 and 1990.Journal of Geophysical Research,110, D08304. DOI:10.1029/2004jd005537.
[21] LeBauer DS,Treseder KK(2008).Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology,89, 371-379.
[22] Li MS(2000).Rational exploitation of grassland resources in the Northern Xizang Plateau.Journal of Natural Resources,15, 335-339.
[22] [李明森(2000).藏北高原草地资源合理利用.自然资源学报,15, 335-339.]
[23] Liebig J(1855).Principles of Agricultural Chemistry. 2nd ed.Walton and Maberly,London.
[24] Odum EP,Barrett GW(2005).Fundamentals of Ecology. 5th ed.Thomson Brooks/Cole, Belmont,USA.
[25] Peñuelas J,Poulter B,Sardans J,Ciais P,van der Velde M,Bopp L,Boucher O,Godderis Y,Hinsinger P,Llusia J,Nardin E,Vicca S,Obersteiner M,Janssens IA(2013).Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe.Nature Communications,4, 2934. DOI:10.1038/ncomms3934.
[26] Shen ZX,Zhou XM,Chen ZZ,Zhou HK(2002).Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow.Acta Phytoecologica Sinica,26, 288-294.
[26] [沈振西,周兴民,陈佐忠,周华坤(2002).高寒矮嵩草草甸植物类群对模拟降水和施氮的响应.植物生态学报,26, 288-294.]
[27] Song MH,Yu FH,Ouyang H,Cao GM,Xu XL,Cornelissen JHC(2012).Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing.Global Change Biology,18, 3100-3111.
[28] Song MH,Zong N,Jiang J,Shi PL,Zhang XZ,Gao JQ,Zhou HK,Li YK,Loreau M(2019).Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability.Science of the Total Environment,692, 441-449.
[29] Sullivan BW,Alvarez-Clare S,Castle SC,Porder S,Reed SC,Schreeg L,Townsend AR,Cleveland CC(2014).Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments.Ecology,95, 668-681.
[30] Tilman D(1982).Resource Competition and Community Structure.Princeton University Press,Princeton.
[31] Vitousek PM(2004).Nutrient Cycling and Limitation: Hawai'i as a Model System.Princeton University Press,Princeton.
[32] Vitousek PM,Porder S,Houlton BZ,Chadwick OA(2010).Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions.Ecological Applications,20, 5-15.
[33] Wieder WR,Cleveland CC,Smith WK,Todd-Brown K(2015).Future productivity and carbon storage limited by terrestrial nutrient availability.Nature Geoscience,8, 441-444.
[34] Wu JS,Zhang XZ,Shen ZX,Shi PL,Xu XL,Li XJ(2013).Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the Northern Tibetan Plateau.Rangeland Ecology and Management,66, 454-461.
[35] Yan ZB,Tian D,Han WX,Tang ZY,Fang JY(2017).An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants.Annals of Botany,120, 937-942.
[36] Yang XX,Ren F,Zhou HK,He JS(2014).Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,38, 159-166.
[36] [杨晓霞,任飞,周华坤,贺金生(2014).青藏高原高寒草甸植物群落生物量对氮、磷添加的响应.植物生态学报,38, 159-166.]
[37] Yuan ZY,Chen HYH(2009).Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation.Global Ecology and Biogeography,18, 11-18.
[38] Zhao GS,Shi PL,Wu JS,Xiong DP,Zong N,Zhang XZ(2017).Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau.Ecology and Evolution,7, 7201-7212.
[39] Zhou XM(2001).Chinese Kobresia Meadows.Science Press,Beijing.
[39] [周兴民(2001).中国嵩草草甸,科学出版社,北京.]
[40] Zong N,Shi PL,Niu B,Jiang J,Song MH,Zhang XZ,He YT(2014).Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China.Chinese Journal of Applied Ecology,25, 3458-3468.
[40] [宗宁,石培礼,牛犇,蒋婧,宋明华,张宪洲,何永涛(2014).氮磷配施对藏北退化高寒草甸群落结构和生产力的影响.应用生态学报,25, 3458-3468.]
[41] Zong N,Song MH,Zhao GS,Shi PL(2020).Nitrogen economy of alpine plants on the north Tibetan Plateau: nitrogen conservation by resorption rather than open sources through biological symbiotic fixation.Ecology and Evolution,10, 2051-2061.
文章导航

/

[an error occurred while processing this directive]