[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

中国东部海岛黑松群落功能多样性的纬度变异及其影响因素

展开
  • 1华东师范大学生态与环境科学学院, 上海 200241
    2浙江普陀山森林生态系统定位观测研究站, 浙江舟山 316000

收稿日期: 2020-07-08

  录用日期: 2020-09-24

  网络出版日期: 2021-01-26

基金资助

国家自然科学基金(31770467)

Latitudinal variability and driving factors of functional diversity in Pinus thunbergiicommunities across sea-islands in Eastern China

Expand
  • 1School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2Zhejiang Putuo Forest Ecosystem Research and Observation Station, Zhoushan, Zhejiang 316000, China

Received date: 2020-07-08

  Accepted date: 2020-09-24

  Online published: 2021-01-26

Supported by

National Natural Science Foundation of China(31770467)

摘要

黑松(Pinus thunbergii)群落在中国东海和黄海海域的海岛广泛分布, 研究其功能多样性的纬度变化特征及其影响因素, 有助于揭示是否在高度隔离的片断化景观中, 同一植物群落类型的生物多样性也具有显著的纬度地带性特征。该研究调查和测定了中国东部海域跨越13个纬度的27个海岛60个黑松群落的物种组成和植物功能性状, 分析了生物因素(黑松优势度和物种多样性)与非生物因素(年平均气温、总太阳辐射和干旱指数)与黑松群落功能多样性的关系, 并利用广义线性回归和方差分解揭示了各影响因素对黑松群落功能多样性的相对影响。主要结果: 随纬度升高, 群落的黑松优势度和物种丰富度, 以及枝干性状和枝叶性状总体的功能丰富度、功能分散度、Rao二次熵均显著降低, 但叶片功能多样性无显著变化趋势。黑松优势度、物种多样性和气候综合解释了枝叶性状总体功能丰富度、分散度和Rao二次熵变异的63%、47%和39%, 枝干性状功能丰富度、分散度和Rao二次熵变异的56%、67%和53%, 对叶片性状功能多样性的综合解释度较低(21%-30%)。物种丰富度和辛普森多样性显著增加叶功能多样性, 香农-维纳多样性显著降低叶功能丰富度。干旱度显著增加枝叶性状总体和枝干功能多样性, 年平均气温显著降低枝干功能分散度和Rao二次熵。该结果表明, 中国东部海岛黑松群落的功能多样性具有明显的纬度格局, 气候因素和物种丰富度是决定黑松群落功能多样性纬度变异的重要因素。

本文引用格式

石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣 . 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021 , 45(2) : 163 -173 . DOI: 10.17521/cjpe.2020.0227

Abstract

Aims The Pinus thunbergii communities is widespread across islands in both Yellow Sea and East China Sea. The objective of this study is to examine the latitudinal pattern of functional diversity and abiotic and biotic drivers of P. thunbergii communities. Our aims are to advance understanding of whether the zonal character of latitude oriented pattern of biodiversity still holds in the same community type across the highly isolated and fragmented landscape.
Methods We investigated community structure and measured plant functional traits across 60 P. thunbergii communities in 27 islands, spanning 13 degree in latitudes of Eastern China. Linear regression was used to analyze the relationships between functional diversity of the P. thunbergii community and each of the biotic factors (the dominance of P. thunbergii and species diversity) and abiotic factors (annual mean temperature, total solar radiation and aridity index). The relative importance of abiotic and biotic factors on the functional diversity of P. thunbergii communities was determined by using the generalized linear model and variance decomposition.
Important findings With the increasing latitude, the dominance of P. thunbergii,species richness, and functional richness, functional dispersion and Rao's quadratic entropy (RaoQ) of stem traits alone and stem and leaf traits in combination decreased significantly but those of leaf traits did not show clear trend, across P. thunbergii communities. The dominance of P. thunbergii, species richness and climatic factors jointly explained 63%, 47% and 39% of variation in each of functional richness, functional dispersion and RaoQ of the combination of leaf and stem traits, and 56%, 67% and 53% of variation in each of functional richness, functional dispersion and RaoQ of stem traits, but small variations in leaf traits (21%-30%). Species richness and Simpson diversity significantly increased but Shannon-Wiener diversity significantly decreased leaf functional richness. Aridity significantly increased functional diversity of stem traits and the combination of leaf and stem traits. Annual mean temperature significantly decreased functional dispersion and RaoQ of wood traits. These results indicate that there is a clear latitudinal pattern of functional diversity in P. thunbergii communities across islands. Climate and species richness play the key roles for shaping the latitudinal variations in functional diversity of P. thunbergii communities across islands in Eastern China.

参考文献

[1] Butterfield BJ, Suding KN (2013). Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101,9-17.
[2] Clarke A, Gaston KJ (2006). Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 273,2257-2266.
[3] Courchamp F, Hoffmann BD, Russell JC, Leclerc C, Bellard C (2014). Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends in Ecology & Evolution, 29,127-130.
[4] Currie DJ (1991). Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137,27-49.
[5] Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E, Turner JRG (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7,1121-1134.
[6] de Bello F, Lep? J, Sebastià MT (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29,801-810.
[7] de Bello F, Lavorel S, Lavergne S, Lavorel S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013). Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography, 36,393-402.
[8] Díaz S, Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16,646-655.
[9] Dwyer JM, Laughlin DC (2017). Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecology Letters, 20,872-882.
[10] Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85,2630-2637.
[11] Givnish TJ (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36,703-743.
[12] Han GX, Wang GM, Mao PL, Zhang ZD, Yu JB, Xu JW (2010). Regeneration dynamics of young Pinus thunbergii and its influencing factors in the coastal protection forests in northern Shandong Peninsula . Scientia Silvae Sinicae, 46(12),158-164.
[12] [ 韩广轩, 王光美, 毛培利, 张志东, 于君宝, 许景伟 (2010). 山东半岛北部黑松海防林幼龄植株更新动态及其影响因素. 林业科学, 46(12),158-164.]
[13] Kang M, Chang SX, Yan ER, Wang XH (2014). Trait variability differs between leaf and wood tissues across ecological scales in subtropical forests. Journal of Vegetation Science, 25,703-714.
[14] Kong FS, Li JS, Lian YW (1999). Vegetation of Islands Located in Fujian Province. Fujian Science and Technology Publishing House, Fuzhou.
[14] [ 孔繁昇, 李金算, 连玉武 (1999). 福建海岛植被. 福建科学技术出版社, 福州.]
[15] Kumordzi BB, de Bello F, Freschet GT, Le Bagousse-Pinguet Y, Lep? J, Wardle DA (2015). Linkage of plant trait space to successional age and species richness in boreal forest understorey vegetation. Journal of Ecology, 103,1610-1620.
[16] Laliberté E, Legendre P (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91,299-305.
[17] Li XG, Zhu ZH, Zhou XS, Yuan FR, Fan RJ, Xu ML (2011). Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China. Chinese Journal of Plant Ecology, 35,1136-1147.
[17] [ 李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽 (2011). 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响. 植物生态学报, 35,1136-1147.]
[18] Liu XY, Zhao CL, Xu MS, Liang QM, Zhu XT, Li L, Yan ER (2019). Beta diversity of vascular plants and its drivers in sea-islands of eastern China. Biodiversity Science, 27,380-387.
[18] [ 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣 (2019). 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27,380-387.]
[19] MacArthur RH (1965). Patterns of species diversity. Biological Reviews, 40,510-533.
[20] Marks CO, Muller-Landau HC, Tilman D (2016). Tree diversity, tree height and environmental harshness in eastern and western North America. Ecology Letters, 19,743-751.
[21] Mason NWH, Mouillot D, Lee WG, Wilson JB (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111,112-118.
[22] Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology(Chinese Version), 31,150-165.
[22] [ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31,150-165.]
[23] Pati?o J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, ávila SP, Cardoso P, Cornuault J, de Boer EJ, de Nascimento L, Gil A, González-Castro A, Gruner DS, Heleno R, et al. (2017). A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography, 44,963-983.
[24] Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61,167-234.
[25] Petchey OL, Gaston KJ (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5,402-411.
[26] Petchey OL, Gaston KJ (2006). Functional diversity: back to basics and looking forward. Ecology Letters, 9,741-758.
[27] Schumm M, Edie SM, Collins KS, Gómez-Bahamón V, Supriya K, White AE, Price TD, Jablonski D (2019). Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proceedings of the Royal Society B: Biological Sciences, 286,20190745. DOI: 10.1098/rspb.2019.0745.
[28] Stahl U, Reu B, Wirth C (2014). Predicting species’ range limits from functional traits for the tree flora of North America. Proceedings of the National Academy of Sciences of the United States of America, 111,13739-13744.
[29] Tuo B, Tian WB, Guo C, Xu MS, Zheng LT, Su T, Liu XY, Yan ER (2019). Latitudinal variation in soil carbon, nitrogen and phosphorus pools across island forests and shrublands in eastern China. Chinese Journal of Applied Ecology, 30,2631-2638.
[29] [ 妥彬, 田文斌, 郭超, 许洺山, 郑丽婷, 苏田, 刘翔宇, 阎恩荣 (2019). 中国东部海岛森林和灌丛土壤碳氮磷养分库的纬度变化. 应用生态学报, 30,2631-2638.]
[30] Villéger S, Mason NWH, Mouillot D (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89,2290-2301.
[31] Wang GM, Zhao Y, Chen B, Lu Z, Qiu HS, Shi J (2011). Natural succession and characteristics of pine community after the invasion of Bursaphelenchus xylophilus in Zhoushan Islands of Zhejiang Province. Scientia Silvae Sinicae, 47(3),124-132.
[31] [ 王国明, 赵颖, 陈斌, 鲁专, 邱海嵊, 石娟 (2011). 浙江舟山岛松材线虫入侵后松林群落的自然演替和特征. 林业科学, 47(3),124-132.]
[32] Whittaker RJ, Rigal F, Borges PAV, Cardoso P, Terzopoulou S, Casanoves F, Pla L, Guilhaumon F, Ladle RJ, Triantis KA (2014). Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences of the United States of America, 111,13709-13714.
[33] Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15,423-434.
[34] Xu JW, Wang WD, Wang YH, Kang Z, Yin RB (2003). Investigation report on the reasons of low-yield, poor-quality, inferior-function of coastal protective forest of Pinus thunbergii Parl. Journal of Northeast Forestry University, 31(5),96-98.
[34] [ 许景伟, 王卫东, 王月海, 康智, 尹若波 (2003). 沿海黑松防护林低产、低质、低效成因的调查报告. 东北林业大学学报, 31(5),96-98.]
[35] Zhang D, Li CR, Xu JW, Liu LC, Zhou Z, Wang XL, Huang C (2011). Branching pattern characteristics and anti- windbreakage ability of Pinus thunbergii in sandy coast. Chinese Journal of Plant Ecology, 35,926-936.
[35] [ 张丹, 李传荣, 许景伟, 刘立川, 周振, 王晓磊, 黄超 (2011). 沙质海岸黑松分枝格局特征及其抗风折能力分析. 植物生态学报, 35,926-936.]
[36] Zhang JT (2011). Quantitative Ecology. Science Press, Beijing.
[36] [ 张金屯 (2011). 数量生态学. 科学出版社, 北京.]
[37] Zheng LT, Su T, Liu XY, Yin F, Guo C, Tuo B, Yan ER (2018). Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China. Chinese Journal of Applied Ecology, 29,343-351.
[37] [ 郑丽婷, 苏田, 刘翔宇, 尹芳, 郭超, 妥彬, 阎恩荣 (2018). 庙岛群岛典型植物群落物种、功能、结构多样性及其对环境因子的响应. 应用生态学报, 29,343-351.]
文章导航

/

005-264X/bottom_cn.htm"-->