[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应

展开
  • 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2中国科学院大学, 北京 100049

网络出版日期: 2016-05-25

基金资助

国家自然科学基金(31361130339、31330015和31300409)和中国科学院战略性先导科技专项(XDA05050404)。

Responses of radial growth to fire disturbance in alpine pine (Pinus densata) of different age classes in Nang County, Xizang, China

Expand
  • 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 China

    2University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2016-05-25

摘要

林火影响着林木的更新、生长发育以及林分演替, 是森林生态系统的重要干扰因子。为了评估林火对不同龄级树木生长的影响, 该文研究了西藏林芝市朗县2005年林火前后高山松(Pinus densata)的树轮变异特点。在林分内, 选择62株过火林木, 进行树芯样品采集, 且依据胸径将样树分为幼树(胸径< 10 cm)和成年树(胸径≥10 cm)。树木年轮学交叉定年结果显示样本最大年龄为102年, 最小年龄为19年, 平均年龄为48年。研究结果表明: 过火前幼树径向生长与上一年11月平均最低气温显著负相关, 成年树径向生长与当年9月平均最低气温和平均气温显著正相关; 过火后幼树和成年树的径向生长均与当年1月平均气温和平均最高气温显著负相关。成年树对火干扰的抵抗力(过火年-过火前树轮宽度降低的百分比)和恢复力(过火后-过火前树轮宽度恢复的百分比)都显著高于幼树。过火后不同龄级的树木生长都加快。在地表火干扰中, 成年树比幼树更能抵抗火干扰的影响。研究结果可为全球变化背景下森林恢复及林火应用提供科学依据。

本文引用格式

李宝, 程雪寒, 吕利新 . 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应[J]. 植物生态学报, 2016 , 40(5) : 436 -446 . DOI: 10.17521/cjpe.2015.0440

Abstract

<i>Aims</i>

Forest fire plays a complex and important role in affecting forest regeneration, tree growth, and stand development. Despite the importance of forest fire in modulating forest dynamics, researches on the response patterns of trees of different age-classes to fire disturbances are scarce. This study was conducted to determine the growth patterns of surviving trees of different age-classes in an alpine pine (Pinus densata) forest in the southeastern Xizang Plateau, where a moderate surface fire occurred in 2005.

<i>Methods</i>

We collected tree-ring samples of P. densata in the Gong-Zi-Nong valley in Nang County, Xizang Autonomous Region, in western China. Based on the diameter at breast height (DBH), the sampling trees were divided into saplings (DBH < 10 cm) and mature trees (DBH ≥10 cm). The tree-ring samples were subsequently polished, measured, cross-dated, and detrended to produce sequences of tree-ring width indices. The detrended tree-ring sequences were averaged using bi-weight robust method to develop chronologies for saplings and mature trees separately. Pearson correlation coefficients and response coefficients between the sequences of tree-ring width indices and climate factors (air temperature and precipitation) were calculated for examination of the responses of tree-ring sequences to monthly mean air temperature and monthly total precipitation both before and after the fire event. Indices of growth resistance and growth recovery were calculated based on the relative changes of trees’ raw ring width before and after the fire event, for trees in different age-classes. These indices were then compared between the trees in different age classes to assess the impacts of fire on trees.

<i>Important findings</i>

Before the fire event, the radial growth of saplings showed a significantly negative response to the monthly mean minimum temperature of the preceding November, whereas the radial growth of mature trees showed a significantly positive response to monthly mean minimum temperature and monthly mean temperature of current September; following the fire event, radial growth of both the saplings and the mature trees showed a significantly negative response to monthly mean temperature and monthly mean maximum temperature of January of the tree-ring formation year. Based on the ratios of mean tree-ring widths of 5 post-fire years to those of 5 pre-fire years, the mature trees were significantly more fire resistant than the saplings. Moreover, the mature trees also showed greater ability in post-fire recoveries than the burnt saplings. Our results demonstrated that moderate surface fire stimulated the radial growth of both saplings and mature trees, and that the mature trees better recovered from the fire event than the saplings. The changes in growth-climate relationships following the fire event may attribute to changes in understory vegetation and microenvironments.

[an error occurred while processing this directive]

参考文献

1 Antos JA, Parish R (2002). Structure and dynamics of a nearly steady-state subalpine forest in south-central British Columbia, Canada.Oecologia, 130, 126-135.
2 Baimalangjie (2006). Records of Linzhi District. China Tibetology Publishing House, Beijing. 146. (in Chinese)[白玛朗杰 (2006). 林芝地区志. 中国藏学出版社, 北京. 146.]
3 Biondi F, Waikul K (2004). DENDROCLIM2002: A C++ pro- gram for statistical calibration of climate signals in tree- ring chronologies.Computers & Geosciences, 30, 303-311.
4 Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, Defries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011). The human dimension of fire regimes on Earth.Journal of Biogeography, 38, 2223-2236.
5 Chen DG, Li CH (2009). Rosin Production Technology of Chinese Pine. China Forestry Publishing House, Beijing. 23-25. (in Chinese)[陈定国, 李春惠 (2009). 中国松树松脂生产技术. 中国林业出版社, 北京. 23-25.]
6 Chen GY, Dejibaima, Wang Z, De J (2010). The characteristics of forest fire changes between years in Linzhi prefecture and corresponding causes’ analysis.Forest Inventory and Planning, 35(3), 11-15. (in Chinese with English abstract)[陈宫燕, 德吉白玛, 旺扎, 德吉 (2010). 林芝地区森林火灾的年际变化特点及致灾原因分析. 林业调查规划, 35(3), 11-15.]
7 Collaborating Group for Vegetation of Sichuan (1980). Vegetation of Sichuan. Sichuan People’s Press, Chengdu. 135-136. (in Chinese)[四川植被协作组 (1980). 四川植被. 四川人民出版社, 成都. 135-136.]
8 Collins BM, Omi PN, Chapman PL (2006). Regional relationships between climate and wildfire-burned area in the Interior West, USA.Canadian Journal of Forest Research, 36, 699-709.
9 Cook ER (1985). A Time Series Analysis Approach to Tree-ring Standardization. PhD dissertation, University of Arizona, Tucson, USA.
10 Cook ER, Kairiukstis LA (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, Dordrecht, Netherlands.
11 Crimmins MA (2006). Synoptic climatology of extreme fire- weather conditions across the southwest United States.International Journal of Climatology, 26, 1001-1016.
12 Dai A (2013). Increasing drought under global warming in observations and models.Nature Climate Change, 3, 52-58.
13 Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres RP, Flannigan MP, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM (2001). Climatic change and forest disturbances.BioScience, 51, 723-734.
14 Editorial Board of China Forest (1999). Volume 2 of China Forest: Coniferous Forest. China Forestry Publishing House, Beijing. 956-958. (in Chinese)[《中国森林》编辑委员会 (1999). 《中国森林第2卷针叶林》. 中国林业出版社, 北京. 956-958.]
15 Fensham RJ, Fairfax RJ (2005). Preliminary assessment of gidgee (Acacia cambagei) woodland thickening in the Longreach district, Queensland.The Rangeland Journal, 27, 159-168.
16 Fraser RH, Li Z (2002). Estimating fire-related parameters in boreal forest using SPOT VEGETATION.Remote Sensing of Environment, 82, 95-110.
17 Fritts HC (1976). Tree Rings and Climate. Academic Press, London.
18 Fritts HC, Dean JS (1992). Dendrochronological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area, southwestern United States.Tree-Ring Bulletin, 52, 31-58.
19 Hare RC (1965). Contribution of bark to fire resistance of southern trees.Journal of Forestry, 63, 248-251.
20 Holden ZA, Morgan P, Crimmins MA, Steinhorst RK, Smith AMS (2007). Fire season precipitation variability influences fire extent and severity in a large southwestern wilderness area, United States.Geophysical Research Letters, 34(16), 1-5.
21 Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement.Tree-Ring Bulletin, 43, 69-78.
22 Hu HQ (2005). Fire Ecology and Management. China Forestry Publishing House, Beijing. (in Chinese)[胡海清 (2005). 林火生态与管理. 中国林业出版社, 北京.]
23 Hu SY (1999). Thermal analysis of wood bark.Transaction of China Pulp and Paper, 14(S1), 97-101. (in Chinese with English abstract)[胡淑宜 (1999). 树皮的热分析法研究. 中国造纸学报, 14(S1). 97-101.]
24 IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
25 Jacquart EM, Armentano TV, Spingarn AL (1992). Spatial and temporal tree responses to water stress in an old-growth deciduous forest.American Midland Naturalist, 127, 158-171.
26 Jiang QB (2012). Growth Response to Climate in Chinese Pine as a Function of Tree Diameter. Master degree dissertation, Beijing Forestry University, Beijing. 15-18. (in Chinese with English abstract)[姜庆彪 (2012). 不同径级油松径向生长对气候的响应研究. 硕士学位论文, 北京林业大学, 北京. 15-18.]
27 Jiang Y, Zhuge YP, Liang C, Zhang XD (2003). Influences of vegetation burning on soil properties.Chinese Journal of Soil Science, 34, 65-69. (in Chinese with English abstract)
28 [姜勇, 诸葛玉平, 梁超, 张旭东 (2003). 火烧对土壤性质的影响. 土壤通报, 34, 65-69.]
29 Kasischke ES (2000). Boreal ecosystems in the global carbon cycle. In: Kasischke ES, Stocks BJ eds. Fire, Climate Change and Carbon Cycling in the Boreal Forest. Ecological Studies Series. Springer-Verlag, New York. 19-30.
30 Keane RE, Morgan P, White JD (1999). Temporal patterns of ecosystem processes on simulated landscapes in Glacier National Park, Montana, USA.Landscape Ecology, 14, 311-329.
31 Keeling EG, Sala A (2012). Changing growth response to wildfire in old-growth ponderosa pine trees in montane forests of north central Idaho.Global Change Biology, 18, 1117-1126.
32 Kozlowski TT, Kramer PJ, Pallardy SG (1991). The Physiological Ecology of Woody Plants. Academic Press, San Diego, USA.
33 Lageard JGA, Thomas PA, Chambers FM (2000). Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires.Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 87-99.
34 Li JQ (2006). Forest Ecology. Higher Education Press, Beijing. 179-180. (in Chinese)[李俊清 (2006). 森林生态学. 高等教育出版社, 北京. 179-180.]
35 Li WH (2013). The Collected Works of Li Wen-Hua. Science Press, Beijing. 608-610. (in Chinese)[李文华 (2013). 李文华文集. 科学出版社, 北京. 608-610.]
36 Liang EY, Shao XM, Hu YX, Lin JX (2001). Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China.Trees, 15, 230-235.
37 Luo Y, Chen HYH (2013). Observations from old forests underestimate climate change effects on tree mortality.Nature Communications, 4, 1655.
38 Meehl GA, Tebaldi C (2004). More intense, more frequent, and longer lasting heat waves in the 21st century.Science, 305, 994-997.
39 Mutch LS, Swetnam TW (1995). Effects of fire severity and climate on ring-width growth of giant sequoia after burning. In: Brown JK, Mutch RW, Spoon CW, Wakimoto RH eds. Proceedings: Symposium on Fire in Wilderness and Park Management. Diane Publishing Company, Darby, USA. 241-246.
40 Pichler P, Oberhuber W (2007). Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003.Forest Ecology and Management, 242, 688-699.
41 Qinghai-Xizang Plateau Comprehensive Scientific Expedition of Chinese Academy of Sciences (1985). Xizang Forests. Science Press, Beijing. 110-116. (in Chinese)[中国科学院青藏高原综合科学考察队 (1985). 西藏森林. 科学出版社, 北京. 110-116.]
42 Sakulich J, Taylor AH (2007). Fire regimes and forest structure in a sky island mixed conifer forest, Guadalupe Mountains National Park, Texas, USA.Forest Ecology and Management, 241, 62-73.
43 Shao XM, Wu XD (1997). Reconstruction of climate change on Changbai Mountain, Northeast China using tree-ring data.Quaternary Sciences, 17(1), 76-85. (in Chinese with Eng- lish abstract)[邵雪梅, 吴祥定 (1997). 利用树轮资料重建长白山区过去气候变化. 第四纪研究, 17(1), 76-85.]
44 Sheffield J, Wood EF, Roderick ML (2012). Little change in global drought over the past 60 years.Nature, 491, 435-438.
45 Sheng H, Yang YS, Chen GS, Gao R, Zeng HD, Zhong XF (2007). The dynamic response of plant root respiration to increasing temperature and global warming.Acta Ecologica Sinica, 27, 1596-1605. (in Chinese with English abstract)[盛浩, 杨玉盛, 陈光水, 高人, 曾宏达, 钟羡芳 (2007). 植物根呼吸对升温的响应. 生态学报, 27, 1596-1605.]
46 Stokes MA, Smiley TL (1968). An Introduction to Tree Ring Dating. University of Chicago Press, Chicago.
47 Su XF (2008). Evaluation on Forest Ecosystem Service Value of Linzhi in Tibet. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. 21-22. (in Chinese with English abstract)[苏迅帆 (2008). 西藏林芝地区森林生态系统服务价值评估研究. 硕士学位论文, 西北农林科技大学, 陕西杨凌. 21-22.]
48 Tian XR, Shu LF, Wang MY, Zhao FY (2007). Study on the spatial and temporal distribution of forest fire in Tibet.Fire Safety Science, 16(1), 10-14. (in Chinese with English abstract)[田晓瑞, 舒立福, 王明玉, 赵凤君 (2007). 西藏森林火灾时空分布规律研究. 火灾科学, 16(1), 10-14.]
49 Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003). The changing character of precipitation.Bulletin of the American Meteorological Society, 84, 1205-1217.
50 Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007). Observations: Surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
51 Voelker SL, Muzika RM, Guyette RP (2008). Individual tree and stand level influences on the growth, vigor, and de- cline of red oaks in the Ozarks.Forest Science, 54, 8-20.
52 Wang YJ, Chen FH, Gou XH, Du SY (2001). Study on response relationship between tree-ring and climate factors and climate reconstruction in middle region of Qilianshan Mountains.Journal of Desert Research, 21(2), 135-140. (in Chinese with English abstract)[王亚军, 陈发虎, 勾晓华, 杜淑英 (2001). 祁连山中部树木年轮宽度与气候因子的响应关系与气候重建. 中国沙漠, 21(2), 135-140.]
53 Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940-943.
54 Williamson GB, Laurance WF, Oliveira AA, Delamonica P, Gascon C, Lovejoy TE, Pohl L (2000). Amazonian tree mortality during the 1997 El Nino drought.Conservation Biology, 14, 1538-1542.
55 Wimmer R, Grabner M (1997). Effects of climate on vertical resin duct density and radial growth of Norway spruce [Picea abies (L.) Karst.].Trees, 11, 271-276.
56 Wu JG, An SQ, Leng X (2013). Lectures in Modern Ecology (VI): Global Climate Change and Ecological Patterns and Processes. Higher Education Press, Beijing. 11-15. (in Chinese)[邬建国, 安树青, 冷欣 (2013). 现代生态学讲座(VI): 全球气候变化与生态格局和过程. 高等教育出版社, 北京. 11-15.]
57 Wu L, Tang CP, Gao H, Chen BB, Zeng C, Guo F (2014). The study of factors influencing the natural regeneration of forests.Protection Forest Science and Technology, (8), 102-105. (in Chinese)[乌拉, 唐翠平, 高辉, 陈贝贝, 曾诚, 郭峰 (2014). 森林自然更新影响因子的探讨. 防护林科技, (8), 102-105.]
58 Wu XD (1990). Tree-rings and Climate Change. China Meteorological Press, Beijing. (in Chinese)[吴祥定 (1990). 树木年轮与气候变化. 气象出版社, 北京.]
59 Xiang FW (1990). The influence on forest soil’s nature and tree’s regeneration for forest fire in the big Xing’an maient. Journal of Jilin Forestry Institute, 6(1), 1-20. (in Chinese with English abstract)[项凤武 (1990). 大兴安岭北部林火对森林土壤的性质及林木更新的影响. 吉林林学院学报, 6(1), 1-20.]
60 Xu FX (1995). The Ecological Study of Forests on Tibetan Plateau. Liaoning University Press, Shenyang. 300-303.(in Chinese) [徐凤翔 (1995). 西藏高原森林生态研究. 辽宁大学出版社, 沈阳. 300-303.]
61 Xu XD, Wang FT, Xiao YS et al. (2002). Regulation Engineering and Technology System on the Prevention of Agrometeorological Disaster. China Meteorological Press, Beijing. 95-96. (in Chinese)[徐祥德, 王馥棠, 萧永生等(2002). 农业气象防灾调控工程与技术系统. 气象出版社, 北京. 95-96.]
62 Yao SR, Wen DY (2002). Forest Fire Management. China Forestry Publishing House, Beijing. 114-117. (in Chinese)[姚树人, 文定元 (2002). 森林消防管理学. 中国林业出版社, 北京. 114-117.]
63 Zhang SY (2006). The Investigation and Statistical Methods of Forest Fire. China Forestry Publishing House, Beijing. 85-88. (in Chinese)[张思玉 (2006). 林火调查与统计. 中国林业出版社, 北京. 85-88.]
64 Zhang Y (2009). The Effect of Forest Fires on Carbon Budget in Daxing’an Mountains. Master degree dissertation, Northeast Forestry University, Harbin. 27-32. (in Chinese with English abstract)[张瑶 (2009). 大兴安岭26年间林火对森林植被碳收支的影响. 硕士学位论文, 东北林业大学, 哈尔滨. 27-32.]
65 Zhou YL, Zu YG, Yu D, Ma JL, Ye WH, Guan WB, Li JW, Li JY, Zhang XJ, Zheng HN, Lang HQ, Nie SQ, Yuan XY, Chang JC, Dong SL, Fu PY, Mu LQ (1997). Geography of the Vegetation in Northeast China. Science Press, Beijing. 25. (in Chinese)[周以良, 祖元刚, 于丹, 马建路, 叶万辉, 关文彬, 李景文, 李冀云, 张喜军, 郑焕能, 郎惠卿, 聂绍荃, 袁晓颖, 常家传, 董世林, 傅沛云, 穆丽蔷 (1997). 中国东北植被地理. 科学出版社, 北京. 25.]
66 Zhu YF, Pan CD, Wang ZX, Kou FT, Tan WP (2009). The influence of fire disturbance on the DBH growth of remained woods of Larix sibirica Ldb.Journal of Xinjiang Agricultural University, 32(3), 1-4. (in Chinese with English abstract)[朱跃峰, 潘存德, 王振锡, 寇福堂, 谭卫平 (2009). 火干扰对西伯利亚落叶松保留木胸径生长的影响. 新疆农业大学学报, 32(3), 1-4.]
文章导航

/

[an error occurred while processing this directive]