[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

不同气候类型下四川草地土壤有机碳空间分布及影响因素

展开
  • 1 阿坝师范学院, 四川汶川 623002
    2 中国科学院成都生物研究所, 成都 610041
    3 中国科学院大学, 北京 100049

网络出版日期: 2018-05-17

基金资助

中国科学院战略性先导科技专项(XDA05050307)

Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China

Expand
  • 1 Aba Teachers University, Wenchuan, Sichuan 623002, China
    2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    3University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2018-05-17

Supported by

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05050307)

摘要

为探讨不同气候类型下, 草地土壤有机碳含量的分布特征及其影响因素, 以四川省广元市、雅安市和凉山州为研究地区, 对区域内分层土壤(0-10、10-20、20-30 cm)有机碳含量、氮含量, 根系碳含量、土壤pH值、土壤容重、草地物种组成和盖度等进行了分析, 探讨不同气候类型下引起土壤有机碳含量变化的主要原因。结果表明: (1) 3个地区草地总土壤有机碳含量差异显著, 量差依次为雅安>凉山>广元, 均出现土壤碳表聚现象, 并随深度增加而递减; (2)雅安草地不同分层土壤有机碳含量占比与广元和凉山具有明显差异, 其中雅安0-10 cm土壤有机碳含量占比显著降低, 而10-20 cm占比显著升高, 土壤有机碳随土层深度增加其降幅与后两者相比略微平缓; (3)广元10-20 cm土壤有机碳含量与草地丰富度指数正相关, 20-30 cm土壤有机碳含量与Shannon-Winner指数负相关, 而分层土壤有机碳则与土壤pH值和土壤氮含量正相关, 雅安和凉山分层土壤有机碳分别与土壤pH值和土壤氮含量正相关; (4)主成分分析显示, 影响3个地区草地土壤有机碳总量变化的主要因素是气候因素, 次要因素是植被因素。

本文引用格式

王丽华, 薛晶月, 谢雨, 吴彦 . 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018 , 42(3) : 297 -306 . DOI: 10.17521/cjpe.2017.0061

Abstract

Aims Spatial distribution and influencing factors of soil organic carbon (SOC) content among different climate types were studied to gain new insights into the estimation and dynamics of SOC.

Methods The study areas are located in the mountain meadow in Guanyuan City, Ya’an City, Liangshan Prefecture of Sichuan Province, China. Plant populations were recorded according to species, number, coverage, meantime, and soil samples (0-10, 10-20, 20-30 cm) were collected and analyzed for SOC content, the carbon content of root, soil pH value, and soil total nitrogen. The diversity indices for plant community diversity (Shannon-? Wiener index) was also calculated to analyze their relationships with SOC content among different climate types.

Important findings Results showed that: (1) SOC in three sites was significantly different and was in the order of Ya’an > Liangshan Prefecture > Guanyuan, and decreased with soil depth. (2) The percentage of SOC content in each vertical layer out of total SOC was lower in the 0-10 cm layer at Ya’an site than at the other two sites, but was higher than the other two sites in the 10-20 cm layer. (3) At Guanyuan site, SOC content in 10-20 cm was significantly positively correlated with plant species richness index and SOC content in 20-30 cm was negatively correlated with plant Shannon-Winner index, while soil pH value and soil total nitrogen were significantly positively correlated with SOC content in each layer. At Ya’an site, SOC content in each layer only had positive correlation with soil pH value, but not with other examined factors. At Liangshan Prefecture site, SOC content in each layer only had positive correlation with soil nitrogen content, but not with other examined factors. (4) Principal component analysis showed that, at Guanyuan, Ya’an and Liangshan Prefecture sites, the total contents of SOC were dominantly affected by climate, followed by vegetation type.

[an error occurred while processing this directive]

参考文献

[1] Alverz R, Lavado RS ( 1998). Climate organic matter and clay content relationship in the Pampa and Chaco, Argentina. Geoderma, 83, 127-141.
[2] Carson WP, Pickett STA ( 1990). Role of resources and disturbance in the organization of an old-field plant community. Ecology, 71, 226-238.
[3] Chen FR, Cheng JM, Liu W, Li Y, Chen A, Zhao XY ( 2012). Effect of disturbances on organic soil carbon in the typical grassland of Loess Plateau. Acta Agrestia Sinica, 20, 298-304, 311.
[3] 陈芙蓉, 程积民, 刘伟, 李媛, 陈奥, 赵新宇 ( 2012). 不同干扰对黄土高原典型草原土壤有机碳的影响. 草地学报, 20, 298-304, 311.
[4] Chen TJ, Hu YK, Liu YY, Gong YM, Fang F, Yang XJ ( 2014). Distribution characteristics and storage of soil organic carbon in the southern slope Altai Mountains. Arid Land Geography, 37, 1231-1239.
[4] 陈廷舰, 胡玉昆, 刘妍妍, 公延明, 房飞, 杨秀娟 ( 2014). 阿尔泰山南坡土壤有机碳密度的分布特征和碳储量估算. 干旱区地理, 37, 1231-1239.
[5] Cheng XF, Shi XZ, Yu DS, Fan XZ ( 2004). Spatial variance and distribution of total nitrogen and organic matter of soil in Xingguo County of Jiangxi, China. Chinese Journal of Applied and Environmental Biology, 10, 64-67.
[5] 程先富, 史学正, 于东升, 潘贤章 ( 2004). 江西省兴国县土壤全氮和有机质的空间变异及其分布格局. 应用与环境生物, 10, 64-67.
[6] Cui HX, Xiao WF, Pan L, Huang ZL, Wang XR, Pang HD ( 2012). Characteristics of soil carbon storage of Abies fargesii forest in Shennongjia. Scientia Silvae Sinicae, 48(11), 107-111.
[6] 崔鸿侠, 肖文发, 潘磊, 黄志霖, 王晓荣, 庞宏东 ( 2012). 神农架巴山冷杉林土壤碳储量特征. 林业科学, 48(11), 107-111.
[7] Curtis RJ, Ferrell GM, Panchabi V ( 1999). Nutrient effects on stand structure, resorption efficiency, and secondary compounds in everglades saw grass. Ecology, 80, 2182-2192.
[8] Davidson EA, Trumbore SE, Amundson R ( 2000). Soil warming and organic carbon content. Nature, 408, 789-790.
[9] EL-ghamry AM, Huang CY, Xu JM, Xie ZM ( 2000). Changes in soil biological properties with the addition of metsulfuron-?methyl herbicide. Journal of Zhejiang University (Science), 1, 442-447.
[10] Fang JY, Chen AP ( 2001). Dynamic forest biomass carbon pools in China and their significance. Acta Botanica Sinica, 43, 967-973.
[11] Feng JM ( 2008). Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodiversity Science, 16, 470-476.
[11] 冯建孟 ( 2008). 中国种子植物物种多样性的大尺度分布格局及其气候解释. 生物多样性, 16, 470-476.
[12] Franzluebbers AJ, Stuedemann JA, Schomberg HH, Wilkinson SR ( 2000). Soil organic C and N pools under long term pasture management in the Southern Piedmont USA. Soil Biology & Biochemistry, 32, 469-478.
[13] Guang GY ( 2015). The Study of Community Diversity and Soil Active Organic Carbon Pool Characteristics under Different Utilizations in Alpine Grassland. XingJiang Agricultural University, ürmüqi.
[13] 管光玉 ( 2015). 不同利用方式高寒草地群落多样性及土壤活性有机碳库特征研究. 新疆农业大学, 乌鲁木齐.
[14] Holt JA ( 1997). Grazing pressure and soil carbon, microbial biomass and enzyme activities in semiarid Northeastern Australia. Applied Soil Ecology, 5, 143-149.
[15] Hu ZL, Pan GX, Li LQ, Du YX, Wang XZ ( 2009). Changes in pool sand heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica, 29, 4187-4193.
[15] 胡忠良, 潘根兴, 李恋卿, 杜有新, 王新洲 ( 2009). 贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性. 生态学报, 29, 4187-4193.
[16] Jeny H ( 1980). The Soil Resource: Origin and Behavior. Springer-Verlag, New York. 377.
[17] Li L, Zhou XY, Huang ZL, Wei SG, Shi JH ( 2006). Study on the relationship between α diversity of plant community and environment on Dinghushan. Acta Ecologica Sinica, 26, 2301-2307.
[17] 李林, 周小勇, 黄忠良, 魏识广, 史军辉 ( 2006). 鼎湖山植物群落α多样性与环境的关系. 生态学报, 26, 2301-2307.
[18] Men MX, Peng ZP, Liu YH, Yu ZR ( 2005). Spatial distribution of soil organic carbon and nitrogen in Hebei Province based on SOTER. Chinese Journal of Soil Science, 36, 469-473.
[18] 门明新, 彭正萍, 刘云慧, 宇振荣 ( 2005). 基于SOTER的河北省土壤有机碳、氮密度的空间分布. 土壤通报, 36, 469-473.
[19] Parker JL, Fernandez IJ, Rustad LE, Norton SA ( 2001). Effects of nitrogen enrichment, wildfire, and harvesting on forest soil carbon and nitrogen. Soil Science Society of America Journal, 65, 1248-1255.
[20] Pennings SC, Grant MB, Bertness MD ( 2005). Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding salinity and competition. Journal of Ecology, 93, 159-167.
[21] Post WM, King AM, Wullschleger SD ( 1996). Soil organic matter models and global estimates of soil organic carbon. In: Powlson DS, Smith P, Smith JU eds. Evaluation of Soil Organic Matter Models: Using Existing Long-Term Datasets (Nato ASI Subseries I). Springer-Verlag, Heidelberg. 38, 201-222.
[22] Ritchie JC, McCarty GW, Venteris ER ( 2007). Soil and soil organic carbon redistribution on the lands cap. Geomorpholosry, 89, 163-171.
[23] Smolander A, Priha O, Paavolainen L, Steer J, M?lk?nen E ( 1998). Nitrogen and carbon transformations before and after clear cutting in repeatedly N fertilized and limed forest soil. Soil Biology & Biochemistry, 30, 477-490.
[24] Tang GY, Li K, Sun YY, Zhang CH ( 2010). Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley. Environmental Science, 31, 1365-1371.
[24] 唐国勇, 李昆, 孙永玉, 张春华 ( 2010). 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征. 环境科学, 31, 1365-1371.
[25] Tilman D ( 1993). Species richness of experimental productivity gradients: How important is colonization? Ecology, 74, 2179-2191.
[26] Wang CT, Long RJ, Liu W, Wang QL, Zhang L, Wu PF ( 2010). Relationships between soil carbon distribution and species diversity and community biomass at different alpine meadows. Resources Science, 32, 2022-2099.
[26] 王长庭, 龙瑞军, 刘尉, 王启兰, 张莉, 吴鹏飞 ( 2010). 高寒草甸不同群落类型土壤碳分布于物种多样性、生物量关系. 资源科学, 32, 2022-2099.
[27] Wang DD, Shi XZ, Lu XX, Wang HJ, Yu DS, Sun WX, Zhao YC ( 2010). Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geoderma, 154, 302-310.
[28] Wang SQ, Zhou CH, Li KR, Zhu SL, Huang FH ( 2000). Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 55, 533-544.
[28] 王绍强, 周成虎, 李克让, 朱松丽, 黄方红 ( 2000). 中国土壤有机碳库及空间分布特征分析. 地理学报, 55, 533-544.
[29] Wang SX, Wang XA, Li GQ, Guo H, Zhu ZH ( 2010). Species diversity and environmental interpretation in the process of community succession in the Ziwu Mountain of Shaanxi Province. Acta Ecologica Sinica, 30, 1638-1647.
[29] 王世雄, 王孝安, 李国庆, 郭华, 朱志红 ( 2010). 陕西子午岭植物群落演替过程中物种多样性变化与环境解释. 生态学报, 30, 1638-1647.
[30] Xi D, Li J, Kuang YW, Xu YM ( 2013). Variation of soil non-labile carbon under different forest types in Heshan. Journal of Tropical and Subtropical Botany, 21(3), 203-210.
[30] 习丹, 李炯, 旷远文, 许伊敏 ( 2013). 鹤山不同植被类型土壤惰性碳含量及其季节变化特征. 热带亚热带植物学报, 21(3), 203-210.
[31] Xie XL, Sun B, Zhou HZ, Li ZP ( 2004). Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedologica Sinica, 41, 688-699.
[31] 谢宪丽, 孙波, 周慧珍, 李忠佩 ( 2004). 不同植被下中国土壤有机碳的储量与影响因子. 土壤学报, 41, 688-699.
[32] Xiong HF, Wang SJ, Rong L, Ni J, Liu XM ( 2013). Litter fall dynamics of plant communities at different succession stages in karst area of Puding, Guizhou Province of Southwest China. Chinese Journal of Ecology, 32, 802-806.
[32] 熊红福, 王世杰, 容丽, 倪健, 刘秀明 ( 2013). 普定喀斯特地区不同演替阶段植物群落凋落物动态. 生态学杂志, 32, 802-806.
[33] Yang JY, Wang CK ( 2005). Soil carbon storage and flux of temperate forest ecosystems in northeastern China. Acta Ecologica Sinica, 25, 2875-2882.
[33] 杨金艳, 王传宽 ( 2005). 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 25, 2875-2882.
[34] Zhang HZ, Zhu QK, Wang J, Kuang GM, Xie J, Zhao WJ ( 2011). Soil physical properties of micro-topography on loess slope in North Shaanxi Province. Bulletin of Soil and Water Conservation, 31(6), 55-58.
[34] 张宏芝, 朱清科, 王晶, 邝高明, 谢静, 赵维军 ( 2011). 陕北黄土坡面微地形土壤物理性质研究. 水土保持通报, 31(6), 55-58.
[35] Zhang L, Wang CY ( 2014). Relationship between species diversity and environmental factors of plant community at different succession stages in ecotone of Great Xing’an and Xiaoxing’an Mountains. Forest Engineering, 30(5), 1-5.
[35] 张玲, 王承义 ( 2014). 大小兴安岭过渡区阔叶红松林次生演替阶段群落多样性指数与环境因子关系. 森林工程, 30(5), 1-5.
[36] Zhang WJ, Zeng LJ, Wang WQ, Zeng CS ( 2011). Soil carbon stock of alligator weed in Min River Estuarine wetland. Wetland Science and Management, 7(1), 52-56.
[36] 张文娟, 曾路金, 王维奇, 曾从盛 ( 2011). 闽江河口空心莲子草土壤碳库研究. 湿地科学与管理, 7(1), 52-56.
[37] Zhang Y, Shi XZ, Yu DS, Liu XM ( 2009). Factors affecting variation of soil organic carbon density in Yunnan-?Guizhou-Guangxi Region. Acta Pedologica Sinica, 46, 526-531.
[37] 张勇, 史学正, 于东升, 刘秀明 ( 2009). 滇黔桂地区土壤有机碳密度变异的影响因素研究. 土壤学报, 46, 526-531.
[38] Zhou L, Li BG, Zhou GS ( 2005). Advances in controlling factors of soil organic carbon. Advances in Earth Science, 20, 99-105.
[38] 周莉, 李保国, 周广胜 ( 2005). 土壤有机碳的主导影响因子及其研究进展. 地球科学进展, 20, 99-105.
文章导航

/

[an error occurred while processing this directive]