[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献
收稿日期: 2020-08-03
录用日期: 2020-12-12
网络出版日期: 2021-03-09
基金资助
国家自然科学基金(41977287);国家自然科学基金(41991285);国家自然科学基金(31971459);广东省林业科技创新项目(2019KJCX023)
Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests
Received date: 2020-08-03
Accepted date: 2020-12-12
Online published: 2021-03-09
Supported by
National Natural Science Foundation of China(41977287);National Natural Science Foundation of China(41991285);National Natural Science Foundation of China(31971459);Science and Technology Innovation Project of Guangdong Province Forestry(2019KJCX023)
磷(P)是森林生态系统生产力的重要限制性元素。土壤磷的有效性取决于磷的存在形态及其转化过程。目前有关增温如何调控磷形态转化过程, 从而促进土壤有效磷含量增加的机制尚未明确。该研究以南亚热带森林为研究对象, 采用沿海拔高度从300 m下降至30 m以模拟温度自然上升的方法, 采集该林型0-10、10-20、20-40 cm的土壤, 并用适用于酸性土壤的连续浸提方法分离不同形态磷, 研究增温对土壤不同形态磷含量的影响, 探讨土壤不同形态磷与有效磷的关系, 识别对土壤有效磷在增温背景下增加有重要贡献的磷组分。结果表明增温使0-10 cm的无机钙磷(Ca-Pi)及20-40 cm的无机铁磷(Fe-Pi)和总无机磷含量分别显著增加了65.5%、17.9%和18.5%, 但对总有机磷及各有机磷组分含量均无显著影响。土壤不同形态磷与有效磷含量的相关分析表明, 有效磷与无机态的不同形态磷及有机铝磷、有机铁磷含量均显著正相关, 其中与Fe-Pi含量的相关性最强。通过土壤不同形态磷与有效磷含量的通径分析进一步发现, 无机铝磷、Fe-Pi是土壤磷转化过程中的重要中间过渡性磷组分, 且Fe-Pi是促进有效磷含量增加最重要的直接贡献磷组分。结合前期研究结果, 增温可能增大了凋落物磷对土壤磷的输入, 还可能强化了土壤的吸附和沉淀过程, 使得更多进入到土壤的溶解态磷转化为Ca-Pi、Fe-Pi等缓效磷源, 其中Fe-Pi可能成为南亚热带森林在气候变暖背景下最重要的有效磷来源。
蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸 . 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献[J]. 植物生态学报, 2021 , 45(2) : 197 -206 . DOI: 10.17521/cjpe.2020.0263
Aims Phosphorus (P) is generally considered to be the important limiting element for forest ecosystem productivity. The availability of soil P depends on the existing fractions of P and their transformation processes. Many researches showed that warming increases soil available P concentration. However, it is still uncertain that how warming increases soil available P concentration through regulating the P cycle processes. The objective of this study was to investigate the effects of warming on concentration of different soil P fractions and to explore the relationships between different soil P fractions and available P concentration, thus identifying the important P fractions contributing to the increased available P concentration and its corresponding mechanisms under warming.
Methods A field warming experiment was conducted by translocating model forest ecosystems from 300 m to 30 m in south subtropical area. Soils with different treatments at 0-10, 10-20 and 20-40 cm depth were collected, respectively, and then different soil P fractions were separated by continuous extraction method applied in acid soils. The correlation analysis and path analysis were performed to explore the relationships between different soil P fractions and available P concentration in the soils.
Important findings The results showed that warming significantly increased the concentrations of inorganic P associated with calcium (Ca-Pi) at 0-10 cm depth and inorganic P concentration associated with iron (Fe-Pi) and total inorganic P concentration at 20-40 cm depth by 65.5%, 17.9% and 18.5%, respectively. However, it had no significant effects on total organic P and all organic P fractions. The correlation analysis results showed that available P concentration was significantly positively correlated with all inorganic P fractions and organic P associated with aluminum and iron. Furthermore, the correlation between available P and Fe-Pi concentration was the strongest. In addition, the path analysis highlights that inorganic P associated with aluminum and Fe-Pi were the important intermediate transitional P fractions in the conversion process of soil P, and Fe-Pi was the greatest direct contributor to the increased available P. Based on the results of previous studies, we propose that warming probably not only increased the input of plant litter P to soil P, but also strengthened desorption and dissolution processes, facilitating more dissolved P converted to moderately available P fractions including Fe-Pi and Ca-Pi. Furthermore, Fe-Pi may become the most important contributor of available P in south subtropical forests under warming.
[1] | Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37,937-944. |
[2] | Barrow NJ (2015). A mechanistic model for describing the sorption and desorption of phosphate by soil. European Journal of Soil Science, 66,9-18. |
[3] | Bei ZX, Zhang QF, Zheng W, Yang LM, Chen YM, Yang YS (2018). Effects of simulated warming on soil phosphorus availability in subtropical Chinese fir plantation. Acta Ecologica Sinica, 38,1106-1113. |
[3] | [ 贝昭贤, 张秋芳, 郑蔚, 杨柳明, 陈岳民, 杨玉盛 (2018). 模拟增温对中亚热带杉木人工林土壤磷有效性的影响. 生态学报, 38,1106-1113.] |
[4] | Chen H, Dong S, Liu L, Ma C, Zhang T, Zhu X, Mo J (2013). Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLOS ONE, 8,e84101. DOI: 10.1371/journal.pone.0084101. |
[5] | Chen ML, Chen H, Mao QG, Zhu XM, Mo JM (2016). Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review. Acta Ecologica Sinica, 36,4965-4976. |
[5] | [ 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明 (2016). 氮沉降对森林土壤磷循环的影响. 生态学报, 36,4965-4976.] |
[6] | Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001). Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications, 11,371-384. |
[7] | Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196,807-815. |
[8] | Doolette AL, Smernik RJ (2011). Soil organic phosphorus speciation using spectroscopic techniques//Bünemann EK, Oberson A, Frossard E. Phosphorus in Action. Springer, Berlin.3-36. |
[9] | Du JJ, Chen ZW (2010). Method of path analysis with SPSS linear regression. Bulletin of Biology, 45(2),4-6. |
[9] | [ 杜家菊, 陈志伟 (2010). 使用SPSS线性回归实现通径分析的方法. 生物学通报, 45(2),4-6.] |
[10] | Du JJ, Zhang YP, Bai JL, Yin ZP (1993). Study on characteristics of phosphorus adsorption and temperature effect in several soils in Shaanxi. Chinese Journal of Soil Science, 24(6),241-243. |
[10] | [ 杜建军, 张一平, 白锦鳞, 尹志鹏 (1993). 陕西几种土壤磷吸附特征及温度效应的研究. 土壤通报, 24(6),241-243.] |
[11] | Fisk M, Santangelo S, Minick K (2015). Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology & Biochemistry, 81,212-218. |
[12] | Gu YC, Qin SW (1997). Accumulation, transformation and availability of phosphorus in fluvoaquic soil under long-term application of phosphate fertilizer. Soil, 29(1),13 -17. |
[12] | [ 顾益初, 钦绳武 (1997). 长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性. 土壤, 29(1),13-17.] |
[13] | Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24,3344-3356. |
[14] | Hou E, Chen C, McGroddy ME, Wen D (2012). Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLOS ONE, 7,e52071. DOI: 10.1371/journal.pone.0052071. |
[15] | Jia G, Shevliakova E, Artaxo P, De Noblet-Ducoudre N, Houghton R, House J, Kitajima K, Lennard C, Popp A, Sirin A, Sukumar R, Verchot L (2019). Land-climate interactions//Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, P?rtner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press, Cambridge, UK. 1-11. |
[16] | Jiang BF, Gu YC (1989). A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 22,58-66. |
[16] | [ 蒋柏藩, 顾益初 (1989). 石灰性土壤无机磷分级体系的研究. 中国农业科学, 22,58-66.] |
[17] | Jiang Y, Rocha AV, Rastetter EB, Shaver GR, Mishra U, Zhuang Q, Kwiatkowski BL (2016). C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska. Landscape Ecology, 31,195-213. |
[18] | Lie ZY, Lin W, Huang WJ, Fang X, Huang CM, Wu T, Chu GW, Liu SZ, Meng Z, Zhou GY, Liu JX (2019). Warming changes soil N and P supplies in model tropical forests. Biology and Fertility of Soils, 55,751-763. |
[19] | Liu JX, Li YL, Liu SZ, Li YY, Chu GW, Meng Z, Zhang DQ (2013). An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems. Chinese Journal of Plant Ecology, 37,558-565. |
[19] | [ 刘菊秀, 李跃林, 刘世忠, 李义勇, 褚国伟, 孟泽, 张德强 (2013). 气温上升对模拟森林生态系统影响实验的介绍. 植物生态学报, 37,558-565.] |
[20] | Liu X, Yang Z, Lin C, Giardina CP, Xiong D, Lin W, Chen S, Xu C, Chen G, Xie J, Li Y, Yang Y (2017). Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation? Agricultural and Forest Meteorology, 246,78-85. |
[21] | Long XY (2011). Climatic Response of Pedogenic Iron Oxides in Subtropical and Tropical Regions. PhD dissertation, Nanjing University, Nanjing.121-122. |
[21] | [ 龙晓泳 (2011). 热带亚热带表生铁氧化物的气候响应研究. 博士学位论文, 南京大学, 南京.121-122.] |
[22] | McDowell RW, Condron LM (2000). Chemical nature and potential mobility of phosphorus in fertilized grassland soils. Nutrient Cycling in Agroecosystems, 57,225-233. |
[23] | Mei LL, Yang X, Zhang SQ, Zhang T, Guo JX (2019). Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of the Total Environment, 686,1129-1139. |
[24] | Reed SC, Yang X, Thornton PE (2015). Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytologist, 208,324-329. |
[25] | Ren ZW, Wu JM, Shi PP, Zhou CF (2017). Research progress on phosphorus chemical behavior and influencing factors in red soil. Inner Mongolia Forestry Investigation and Design, 40,100-104. |
[25] | [ 任子文, 吴佳美, 石佩佩, 周垂帆 (2017). 红壤磷素化学行为及影响因素研究进展. 内蒙古林业调查设计, 40,100-104.] |
[26] | Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357,73-87. |
[27] | Santos F, Abney R, Barnes M, Bogie N, Ghezzehei TA, Jin L, Moreland K, Sulman BN, Berhe AA (2019). The role of the physical properties of soil in determining biogeochemical responses to soil warming//Mohan JE. Ecosystem Consequeces of Soil Warming. Academic Press, Salt Lake City, USA. 209-244. |
[28] | Schreeg LA, Mack MC, Turner BL (2013). Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry, 113,507-524. |
[29] | Siebers N, Sumann M, Kaiser K, Amelung W (2017). Climatic effects on phosphorus fractions of native and cultivated North American grassland soils. Soil Science Society of America Journal, 81,299-309. |
[30] | Sims JT, Pierzynski GM (2005). Chemistry of phosphorus in soils//Tabatabai MA, Sparks DL. Chemical Processes in Soils. Soil Science Society of America, Madison, USA. 151-192. |
[31] | Spohn M, Schleuss PM (2019). Addition of inorganic phosphorus to soil leads to desorption of organic compounds and thus to increased soil respiration. Soil Biology & Biochemistry, 130,220-226. |
[32] | Su YY (2012). Study on the Spatial-temporal Variability of Phosphorus and Soil Adsorption in Forest Belt Surrounding Taihu Lake. Master degree dissertation, Nanjing Forestry University, Nanjing.4-5. |
[32] | [ 苏莹莹 (2012). 环太湖林带磷素时空变异及土壤吸附作用研究. 硕士学位论文, 南京林业大学, 南京.4-5.] |
[33] | Sun GF, Jin JY, Shi YL (2011). Research advance on soil phosphorus forms and their availability to crops in soil. Soil and Fertilizer Sciences in China, (2),1-9. |
[33] | [ 孙桂芳, 金继运, 石元亮 (2011). 土壤磷素形态及其生物有效性研究进展. 中国土壤与肥料, (2),1-9.] |
[34] | Sun QQ, Wang ZY, Zhao H, Wang XJ, Lv HF, Chen Y (2012). Effect of site-specific fertilization on soil phosphorus in purple garden soil. Acta Ecologica Sinica, 32,2539-2549. |
[34] | [ 孙倩倩, 王正银, 赵欢, 王小晶, 吕慧峰, 陈怡 (2012). 定位施肥对紫色菜园土磷素状况的影响. 生态学报, 32,2539-2549.] |
[35] | Sun Y, Peng S, Goll DS, Ciais P, Guenet B, Guimberteau M, Hinsinger P, Janssens IA, Pe?uelas J, Piao S, Poulter B, Violette A, Yang X, Yin Y, Zeng H (2017). Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Future, 5,730-749. |
[36] | Tang CD, Guo JF, Zhang Z, Cai XZ, Yang YS (2017). Effects of soil warming and precipitation exclusion on soil nutrients and microbial biomass in young Chinese fir plantation. Journal of Subtropical Resources and Environment, 12,40-45. |
[36] | [ 唐偲頔, 郭剑芬, 张政, 蔡小真, 杨玉盛 (2017). 增温和隔离降雨对杉木幼林土壤养分和微生物生物量的影响. 亚热带资源与环境学报, 12,40-45.] |
[37] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13,87-115. |
[38] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20,5-15. |
[39] | Wang H, Liu S, Schindlbacher A, Wang J, Yang Y, Song Z, You Y, Shi Z, Li Z, Chen L, Ming A, Lu L, Cai D (2019). Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biology & Biochemistry, 133,155-164. |
[40] | Wang T, Zhou JM, Wang HY, Du CW, Chen XQ (2010). Influences of temperature and duration of incubation on transformation of phosphate fertilizers in black soil. Acta Pedologica Sinica, 47,1188-1193. |
[40] | [ 王涛, 周健民, 王火焰, 杜昌文, 陈小琴 (2010). 培养温度和时间对磷肥在黑土中转化的影响. 土壤学报, 47,1188-1193.] |
[41] | Wang XT, Guo WD, Zhong Z, Cui XY (2009). Long term trends of soil moisture and temperature change in East China in relationship with climate background. Advances in Earth Science, 24,181-191. |
[41] | [ 王晓婷, 郭维栋, 钟中, 崔晓燕 (2009). 中国东部土壤温度、湿度变化的长期趋势及其与气候背景的联系. 地球科学进展, 24,181-191.] |
[42] | Wu T, Liu SZ, Lie ZY, Zheng MH, Duan HL, Chu GW, Meng Z, Zhou GY, Liu JX (2020). Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species. Forest Ecology and Management, 461,117952. DOI: 10.1016/j.foreco.2020.117952. |
[43] | Xiao HL, Zheng XJ (2000). Effects of soil warming on some soil chemical properties. Soil and Environmental Sciences, 9,316-321. |
[43] | [ 肖辉林, 郑习健 (2000). 土壤温度上升对某些土壤化学性质的影响. 土壤与环境, 9,316-321.] |
[44] | Yan JL (2016). Study on the Adsorption of Iron Oxide-organic Matter Complex on Phosphorus and Its Regulation Effects on Phosphorus Fraction. PhD dissertation, Southwest University, Chongqing.4-5. |
[44] | [ 闫金龙 (2016). 铁氧化物-有机质复合物对磷的吸附与形态调控效应研究. 博士学位论文, 西南大学,重庆.4-5.] |
[45] | Yan YP (2015). Adsorption, Desorption and Precipitation of Several Soil Organic Phosphates on Iron and Aluminum (Oxyhydr) Oxide. PhD dissertation, Huazhong Agricultural University, Wuhan.2-4. |
[45] | [ 严玉鹏 (2015). 几种土壤有机磷在铁铝氧化物表面的吸附、解吸与沉淀. 博士学位论文, 华中农业大学, 武汉.2-4.] |
[46] | Yang LM, Yang ZJ, Peng YZ, Lin YY, Xiong DC, Li YQ, Yang YS (2019). Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment. Plant and Soil, 444,87-99. |
[47] | Yang XY (2016). Effect of Organic Acids on Black Soil Phosphorus Fractionations and Phosphorus Availability. PhD dissertation, Northeast Forestry University, Harbin.15-16. |
[47] | [ 杨小燕 (2016). 外源有机酸对黑土土壤磷形态及有效性的影响. 博士学位论文, 东北林业大学,哈尔滨.15-16.] |
[48] | Zhang GQ (2014). Effects of Different Forms of P Fertilizer and Its Supply Strategy on Soil P Availability and P Utilization Efficiency on Calcareous Soil. Master degree dissertation, Shihezi University, Shihezi, Xinjiang.5-6. |
[48] | [ 张国桥 (2014). 不同磷源及其施用方式对石灰性土壤磷的有效性与磷肥利用效率的影响. 硕士学位论文, 石河子大学,新疆石河子.5-6.] |
[49] | Zhang L, Wu N, Wu Y, Luo P, Liu L, Chen WN, Hu HY (2009). Soil phosphorus form and fractionation scheme: a review. Chinese Journal of Applied Ecology, 20,1775-1782. |
[49] | [ 张林, 吴宁, 吴彦, 罗鹏, 刘琳, 陈文年, 胡红宇 (2009). 土壤磷素形态及其分级方法研究进展. 应用生态学报, 20,1775-1782.] |
[50] | Zhao SJ, Qi WX, Li J, Gang DG, Ran YZ (2018). Impact of water level on phosphorus flux in water level fluctuating zone at Miyun Reservior. Acta Scientiae Circumstantiae, 38,2400-2408. |
[50] | [ 赵双菊, 齐维晓, 李静, 钢迪嘎, 冉韵竹 (2018). 水位对密云水库消落区土壤磷通量影响的模拟研究. 环境科学学报, 38,2400-2408.] |
[51] | Zhu J, Li M, Whelan M (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of the Total Environment, 612,522-537. |
/
〈 |
|
〉 |