[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应
收稿日期: 2022-05-26
录用日期: 2022-09-28
网络出版日期: 2022-09-28
基金资助
国家自然科学基金(31960359);宁夏重点研发计划(2021BEG02005);第三批宁夏青年科技人才托举工程(TJGC2018068)
Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe
Received date: 2022-05-26
Accepted date: 2022-09-28
Online published: 2022-09-28
Supported by
National Natural Science Foundation of China(31960359);Ningxia Huizu Autonomous Region Key Research and Development Project(2021BEG02005);Third Batch of Ningxia Young Scientific and Technological Talent Support Project(TJGC2018068)
为了解荒漠草原表层土壤氨氧化细菌(AOB)对枯落物输入及氮添加的响应, 该研究以宁夏回族自治区盐池县荒漠草原为实验平台, 选择4种常见植物——苦豆子(Sophora alopecuroides)、猪毛蒿(Artemisia scoparia)、短花针茅(Stipa breviflora)和沙芦草(Agropyron mongolicum)的枯落物设置枯落物输入处理, 设置对照(0 g·m-2·a-1)、氮添加(9.2 g·m-2·a-1) 2个处理, 运用荧光定量PCR、高通量测序等分子生物学技术, 探究了荒漠草原0-5 cm表层土壤AOB对氮添加和不同枯落物输入的响应。研究结果显示, 在氮添加和枯落物输入条件下, 荒漠草原土壤表层AOB共有3门4纲6目7科8属17种。实验所测AOB群落物种主要来源于β-变形菌纲(beta-Proteobacteria)中的亚硝基单胞菌属(Nitrosomonas)和亚硝基螺旋菌属(Nitrosospira), 且以亚硝基单胞菌属为优势种群。与对照相比, 氮添加显著降低了AOB-氨单加氧酶(amoA)基因拷贝数, 表明施氮会抑制荒漠草原表层土壤中的硝化作用。在不同种类的枯落物输入下, AOB-amoA基因丰度的响应具有差异性, 枯落物输入能够在一定程度上缓解氮添加对土壤AOB-amoA基因丰度的抑制, 但总体上不会改变其变化趋势。冗余分析结果表明土壤有机碳、全磷、硝态氮和铵态氮含量是影响AOB-amoA基因丰度的主要土壤理化因子。研究结果表明, 氮添加能够显著降低荒漠草原土壤表层AOB-amoA的基因丰度, 该结果有助于丰富和拓展未来干旱半干旱荒漠草原地区氮沉降变化对土壤表层氮循环功能基因丰度的影响和机制的认识。
张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌 . 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023 , 47(5) : 699 -712 . DOI: 10.17521/cjpe.2022.0220
Aims This study aimed to explore the response of ammonia oxidizing bacteria (AOB) to litter decomposition and nitrogen application in the topsoil of desert steppe, and the main environmental factors influencing the AOB were also analyzed. Thus, this study will contribute to better understanding of the mechanism of nitrogen cycle function gene abundance in response to nitrogen deposition in arid and semi-arid desert steppe regions.
Methods We conducted the nitrogen fertilization experiment in the desert steppe in Yanchi, Ningxia. The four plant litters, including Sophora alopecuroides, Artemisia scoparia, Stipa breviflora and Agropyron mongolicum were selected as plant litter input treatments. The nitrogen fertilization treatments, including control (0 g·m-2·a-1) and nitrogen application (9.2 g·m-2·a-1), were applied to explore the response of AOB to nitrogen deposition and different litter inputs in top soil (0-5 cm) of desert steppe by fluorescent quantitative PCR and high-throughput sequencing.
Important findings Our results showed that there were 3 phyla, 4 classes, 6 orders, 7 families, 8 genera and 17 species of AOB in the topsoil of desert steppe under nitrogen application and litter decomposition. The AOB communities were mainly derived from Nitrosomonas and Nitrosospira, which were from beta-Proteobacteria, and Nitrosospira was the dominant species. Compared with the control, the gene copy number of AOB was significantly decreased under nitrogen application, indicating that nitrogen application inhibited nitrification in the topsoil of the desert steppe. Whereas, the response of AOB-ammonia monooxy genase subsuit A (amoA) gene abundance varied under different plant litter decomposition. Litter input could alleviate the inhibition of nitrogen enrichment on soil AOB-amoA gene abundance to a certain extent, but did not change the trend of soil AOB-amoA gene abundance. A redundancy analysis confirmed that soil organic carbon, total phosphorus, ammonium nitrogen and nitrate nitrogen contents were the key environmental factors affecting niche separation of AOB-amoA gene abundance in desert steppe soil. The results showed that nitrogen addition could significantly reduce the gene abundance of AOB-amoA, thereby affecting the nitrification and the direction of soil nitrogen transformation in the topsoil of desert steppe.
[1] | An Y, An H, Li SB (2018). Effects of grazing on ecological stoichiometry of soil and dominant plants in desert grassland. Acta Prataculturae Sinica, 27(12), 94-102. |
[1] | [安钰, 安慧, 李生兵 (2018). 放牧对荒漠草原土壤和优势植物生态化学计量特征的影响. 草业学报, 27(12), 94-102.] |
[2] | Bai YF, Wu JG, Clark CM, Naeemz S, Pan QM, Hang JH, Zhang LX, Han GL (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372. |
[3] | Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J (2007). Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 yr of treatment. New Phytologist, 175, 523-534. |
[4] | Berg B, Johansson MB, Liu CJ, Faituri M, Sanborn P, Vesterdal L, Ni XY, Hansen K, Ukonmaanaho L (2017). Calcium in decomposing foliar litter—A synthesis for boreal and temperate coniferous forests. Forest Ecology and Management, 403, 137-144. |
[5] | Chen HZ, Liu ZZ (2020). Effects of simulated nitrogen deposition on litter decomposition and soil microbial activities in Pinus massoniana plantations. Research of Soil and Water Conservation, 27(1), 73-80. |
[5] | [陈汉章, 刘志中 (2020). 氮添加对马尾松人工林凋落物分解及其微生物活性的影响. 水土保持研究, 27(1), 73-80.] |
[6] | Chen Z (2015). Effects of Land Use Change on Community of Soil Bacteria and Ammonia-oxidizing Microorganisms in Semi-arid Areas of Northern China. PhD dissertation, China Agricultural University, Beijing. |
[6] | [陈竹 (2015). 北方半干旱区退耕和开垦对土壤细菌和氨氧化微生物的影响. 博士学位论文, 中国农业大学, 北京.] |
[7] | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. |
[8] | Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-782. |
[9] | Damgaard C, Jensen L, Frohn LM, Borchseniius F, Nielson KE, Ejrnaes R, Stevens CJ (2011). The effect of nitrogen deposition on the species richness of acid grasslands in Denmark: a comparison with a study performed on a European scale. Environmental Pollution, 7, 1778-1782. |
[10] | Dong JF, Che RX, Jia SG, Wang F, Zhang B, Cui XY, Wang XP, Wang SP (2020). Responses of ammonia-oxidizing archaea and bacteria to nitrogen and phosphorus amendments in an alpine steppe. European Journal of Soil Science, 75, 940-954. |
[11] | Du YG, Ke X, Li JM, Wang YY, Cao GM, Guo XW, Chen KL (2021). Nitrogen deposition increases global grassland N2O emission rates steeply: a meta-analysis. CATENA, 199, 359-366. |
[12] | Entwistle EM, Romanowicz KJ, Argiroff WA, Freedman ZB, Morris JJ, Zak DR (2018). Anthropogenic N deposition alters the composition of expressed class II fungal peroxidases. Applied and Environmental Microbiology, 84, e02816-17. DOI: 10.1128/AEM.02816-17. |
[13] | Geng QQ, Wang YL, Niu GX, Wang NN, Hasi M, Li A, Huang JH (2021). Effects of long-term nitrogen addition on the nitrogen pools in a meadow steppe ecosystem. Chinese Journal of Applied Ecology, 32, 2783-2790. |
[13] | [耿倩倩, 王银柳, 牛国祥, 王楠楠, 哈斯木其尔, 李昂, 黄建辉 (2021). 长期氮添加对草甸草原生态系统氮库的影响. 应用生态学报, 32, 2783-2790.] |
[14] | Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP, Band LE, Baron JS, Davidson EA, Tague CL, Felker-Quinn E, Lynch JA, Herrick JD, Liu L, Goodale CL, et al. (2016). Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 6, 836-843. |
[15] | Gu FX, Huang M, Zhang YD, Yan HM, Li J, Guo R, Zhong XL (2016). Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010. Acta Ecologica Sinica, 36, 3591-3600. |
[15] | [顾峰雪, 黄玫, 张远东, 闫慧敏, 李洁, 郭瑞, 钟秀丽 (2016). 1961-2010年中国区域氮沉降时空格局模拟研究. 生态学报, 36, 3591-3600.] |
[16] | Hao YJ, Wu SW, Wu WX, Chen YX (2007). Research progress on the microbial ecology of aerobic ammonia-oxidizing bacteria. Acta Ecologica Sinica, 27, 1573-1582. |
[16] | [郝永俊, 吴松维, 吴伟祥, 陈英旭 (2007). 好氧氨氧化菌的种群生态学研究进展. 生态学报, 27, 1573-1582.] |
[17] | He GZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007). Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9, 2364-2374. |
[18] | Hobbie SE (2015). Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology & Evolution, 30, 357-363. |
[19] | Hou SL, Freschet GT, Yang JJ, Zhang YH, Yin JX, Hu YY, Wei HW, Han XG, Lü XT (2018). Quantifying the indirect effects of nitrogen deposition on grassland litter. Biogeochemistry, 139, 261-273. |
[20] | Knops JMH, Bradley KL, Wedin DA (2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5, 454-466. |
[21] | Knorr M, Frey SD, Curtis PS (2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257. |
[22] | Li JY, Qin SJ, Ge P, Lü DG, Liu LZ (2016). Abundance of ammonia oxidizers in apple orchard soil at different growth stages. Journal of Plant Nutrition and Fertilizer, 22, 1149-1156. |
[22] | [李景云, 秦嗣军, 葛鹏, 吕德国, 刘灵芝 (2016). 不同生育期苹果园土壤氨氧化微生物丰度研究. 植物营养与肥料学报, 22, 1149-1156.] |
[23] | Li TY, Kang FF, Han HR, Gao J, Song XS, Yu S, Zhao JL, Yu XW (2015). Responses of soil microbial carbon metabolism to the leaf litter composition in Liaohe River Nature Reserve of northern Hebei Province, China. Chinese Journal of Applied Ecology, 26, 715-722. |
[23] | [立天宇, 康峰峰, 韩海荣, 高晶, 宋小帅, 于舒, 赵金龙, 于晓文 (2015). 冀北辽河源自然保护区土壤微生物碳代谢对阔叶林叶凋落物组成的响应. 应用生态学报, 26, 715-722.] |
[24] | Liu HM, Zhang HF, Qin J, Wang H, Zhang YJ, Yang DL (2019). Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-Environment Science, 38, 2386-2394. |
[24] | [刘红梅, 张海芳, 秦洁, 王慧, 张艳军, 杨殿林 (2019). 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 38, 2386-2394.] |
[25] | Liu HY, Wang W, Zhang RF, Lei B, Yao J (2021). Influence of biofertilizers on community diversity and population structure of soil bacteria in cotton field. Xinjiang Agricultural Sciences, 58, 2256-2264. |
[25] | [刘海洋, 王伟, 张仁福, 雷斌, 姚举 (2021). 施用生物菌剂对棉田土壤细菌群落多样性及种群结构的影响. 新疆农业科学, 58, 2256-2264.] |
[26] | Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang w, Chen H, Mo JM (2013). Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE, 8, e61188. DOI: 10.1371/journal.pone.0061188. |
[27] | Liu WQ, Liu BY, Wang J, Lei CY (2010). Responses of soil microbial communities to moss cover and nitrogen addition. Acta Ecologica Sinica, 30, 1691-1698. |
[27] | [刘蔚秋, 刘滨扬, 王江, 雷纯义 (2010). 不同环境条件下土壤微生物对模拟大气氮沉降的响应. 生态学报, 30, 1691-1698.] |
[28] | Lu J, Zhang X, Huang Y, Cao GQ, Fei YC (2020). Effect of nitrogen deposition on soil enzymes and microorganisms in the process of forest litters decomposition. Journal of Hunan Ecological Science, 7(4), 54-61. |
[28] | [路锦, 张筱, 黄樱, 曹光球, 费裕翀 (2020). 氮沉降对森林凋落物分解过程中土壤酶和微生物影响的研究进展. 湖南生态科学学报, 7(4), 54-61.] |
[29] | Luo D, Shi ZM, Li DS (2018). Short-term effects of litter treatment on soil C and N transformation and microbial community structure in Erythrophleum fordii plantation. Chinese Journal of Applied Ecology, 29, 2259-2268. |
[29] | [罗达, 史作民, 李东胜 (2018). 枯落物处理对格木林土壤碳氮转化和微生物群落结构的短期影响. 应用生态学报, 29, 2259-2268.] |
[30] | Marschner P, Yang CH, Lieberei R, Crowley DE (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology & Biochemistry, 33, 1437-1445. |
[31] | Morrison EW, Pringle A, van Diepen LT, Frey SD (2019). Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition. Soil Biology & Biochemistry, 125, 75-85. |
[32] | Niu SL, Classen AT, Dukes JS, Kardol P, Liu LL, Luo YQ, Rustad L, Sun J, Tang JW, Templer PH, Thomas RQ, Tian DS, Vicca S, Wang YP, Xia JY, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709. |
[33] | Norman JS, Barrett JE (2014). Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biology & Biochemistry, 69, 141-146. |
[34] | Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, Heuvelink GBM, Schuur EAG, Maestre FT (2018). Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8, 13788. DOI: 10.1038/s41598-018-32229-0. |
[35] | Qin H, Li GD, Ye ZQ, Xu QF, Cao ZH (2010). Evolvement of soil bacterial community in intensively managed Phyllostachys praecox stand and related affecting factors. Chinese Journal of Applied Ecology, 21, 2645-2651. |
[35] | [秦华, 李国栋, 叶正钱, 徐秋芳, 曹志洪 (2010). 集约种植雷竹林土壤细菌群落结构的演变及其影响因素. 应用生态学报, 21, 2645-2651.] |
[36] | Rene G, Day TA, Thomas AD, Sergio VA, Raphael G (2017). Mixing of Aleppo pine and Holm oak litter increases biochemical diversity and alleviates N limitations of microbial activity. Soil Biology & Biochemistry, 105, 216-226. |
[37] | Schleuss PM, Widdig M, Heintz-Buschart A, Guhr A, Martin S, Kirkman K, Spohn M (2019). Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biology & Biochemistry, 135, 294-303. |
[38] | Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154. |
[38] | [沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.] |
[39] | Shen XY, Zhang LM, Shen JP, Li LH, Yuan CL, He JZ (2011). Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 11, 1243-1252. |
[40] | Song YN, Lin Y, Chen ZQ (2017). Effect of nitrogen fertilizer level on bacterial community and N2O emission in paddy soil. Chinese Journal of Eco-Agriculture, 25, 1266-1275. |
[40] | [宋亚娜, 林艳, 陈子强 (2017). 氮肥水平对稻田细菌群落及N2O排放的影响. 中国生态农业学报, 25, 1266-1275.] |
[41] | Stauffer BA, Sukhatme GS, Caron DA (2020). Physical and biogeochemical factors driving spatially heterogeneous phytoplankton blooms in nearshore waters of santa Monica Bay, USA. Estuaries and Coasts, 43, 909-926. |
[42] | Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R fowler D, Corcket E, Mountford JO, Vangvik V, Aarrestad PA, Muller S, Dise NB (2010). The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environmental Pollution, 159, 2243-2250. |
[43] | Su Y, Wang WD (2017). Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in north China. Acta Scientiae Circumstantiae, 37, 3519-3527. |
[43] | [苏瑜, 王为东 (2017). 我国北方四类土壤中氨氧化古菌和氨氧化细菌的活性及对氨氧化的贡献. 环境科学学报, 37, 3519-3527.] |
[44] | Sun YF, Shen JP, Zhang CJ, Zhang LM, Bai WM, Fang Y, He JZ (2018). Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. Journal of Soils and Sediments, 18, 762-774. |
[45] | Tian XF, Hu HW, Ding Q, Song MH, Xu XL, Zheng Y, Guo LD (2014). Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biology and Fertility of Soils, 50, 703-713. |
[46] | Wang J, Ge Y, Cornelissen JHC, Wang XY, Gao S, Bai Y, Chen T, Jing WZ, Zhang CB, Liu WL, Li JM, Yu FH (2022). Litter nitrogen concentration changes mediate effects of drought and plant species richness on litter decomposition. Oecologia, 198, 507-518. |
[47] | Wang J, Li G, Lan X, Song XL, Zhao JN, Yang DL (2015). Differential responses of ammonia-oxidizers communities to nitrogen and water addition in Stipa baicalensis steppe, Inner Mongolia, Northern China. Journal of Resources and Ecology, 6, 1-11. |
[48] | Weand MP, Arthur MA, Lovett GM, McCulley RL, Weathers KC (2010). Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biology & Biochemistry, 42, 2161-2173. |
[49] | Yang HY, Zhang T, Huang YM, Duan L (2016). Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environmental Science, 37, 1900-1907. |
[49] | [杨涵越, 张婷, 黄永梅, 段雷 (2016). 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 37, 1900-1907.] |
[50] | Yang YD, Zhang MC, Hu JW, Zhang K, Hu YG, Zeng ZH (2017). Effects of nitrogen fertilizer application on abundance and community structure of ammonia oxidizing bacteria and archaea in a north China agricultural soil. Acta Ecologica Sinica, 37, 3636-3646. |
[50] | [杨亚东, 张明才, 胡君蔚, 张凯, 胡跃高, 曾昭海 (2017). 施氮肥对华北平原土壤氨氧化细菌和古菌数量及群落结构的影响. 生态学报, 37, 3636-3646.] |
[51] | Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[52] | Zhang C, Song ZL, Zhuang DH, Wang J, Xie SS, Liu GB (2019). Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biology and Fertility of Soils, 55, 229-242. |
[53] | Zhang HH, Bai YY, Zhang YJ, Le YJ, Xu JW, Tao Y, Shui LX, Zhao C, Liu LJ (2022). Response of chemical composition and ecological stoichiometric characteristics of three types of litter to simulated nitrogen deposition in the Changbai Mountain tundra. Acta Ecologica Sinica, 42, 8795-8808. |
[53] | [张慧慧, 白云玉, 张英洁, 勒英华, 许嘉巍, 陶岩, 水新利, 赵琛, 刘丽杰 (2022). 长白山苔原带凋落物生态化学计量特征及其对模拟氮沉降的响应. 生态学报, 42, 8795-8808.] |
[54] | Zhang WD, Chao L, Yang QP, Wang QK, Fang YT, Wang SL (2016). Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology, 97, 2834-2843. |
[55] | Zou YK, Zhang JN, Chen XR, Yang DL, Zhang TR, Wen D, Wang L (2012). Effects of three land use patterns on diversity and community structure of soil ammonia- oxidizing bacteria in Leymus chinensis steppe. Acta Ecologica Sinica, 32, 3118-3127. |
[55] | [邹雨坤, 张静妮, 陈秀蓉, 杨殿林, 张天瑞, 文都日乐, 王丽 (2012). 三种利用方式对羊草草原土壤氨氧化细菌群落结构的影响. 生态学报, 32, 3118-3127.] |
/
〈 |
|
〉 |