[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节

  • 王堃莹 ,
  • 邱贵福 ,
  • 刘子赫 ,
  • 孟君 ,
  • 刘宇轩 ,
  • 贾国栋
展开
  • 1北京林业大学水土保持学院, 北京 100083
    2北京林业大学水土保持国家林业和草原局重点实验室, 北京 100083
    3林木资源高效生产全国重点实验室, 北京 100083
    4张家口塞北林场(市国有林场管理处), 河北张家口 075000
*贾国栋: (jiaguodong@bjfu.edu.cn)

收稿日期: 2023-12-06

  录用日期: 2024-09-18

  网络出版日期: 2024-09-24

基金资助

国家重点研发计划(2023YFF1305302);国家自然科学基金(42277062);国家自然科学基金(41977149)

Climate change regulate tree growth and intrinsic water use efficiency of Populus simonii at different levels of degradation

  • WANG Kun-Ying ,
  • QIU Gui-Fu ,
  • LIU Zi-He ,
  • MENG Jun ,
  • LIU Yu-Xuan ,
  • JIA Guo-Dong
Expand
  • 1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2Key Laboratory of National Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    3State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
    4Zhangjiakou Saibei Forestry (Municipal State Forestry Administration), Zhangjiakou, Hebei 075000, China

Received date: 2023-12-06

  Accepted date: 2024-09-18

  Online published: 2024-09-24

Supported by

National Key R&D Program of China(2023YFF1305302);National Natural Science Foundation of China(42277062);National Natural Science Foundation of China(41977149)

摘要

小叶杨(Populus simonii)作为中国北方重要防护树种, 其大面积衰退对生态系统健康发展及防护林持续经营产生了严重影响, 探究气候变化背景下小叶杨退化原因可为人工林的管理经营提供参考。该研究调查了张北县3种不同退化程度的小叶杨人工林, 将其胸高断面积增量(BAI)、内在水分利用效率(iWUE)、树轮碳稳定同位素比值和气孔调节策略进行对比, 从而分析了气候变化对小叶杨生长和iWUE的影响。结果显示: 1) CO2浓度和气温是iWUE变化的主要驱动因素, 在大气CO2浓度增加、气候变化和生理状况综合影响下, 小叶杨的iWUE呈现明显增加趋势, 不同退化程度小叶杨BAI均呈先增后减趋势。2) 3种不同退化程度小叶杨林分的生长主要受气温影响, 大多数情况下研究区iWUE的增加并不能促进树木生长。3)气候变化背景下, 衰退树木对干旱更为敏感, 干旱胁迫下, 退化程度大的林分采取更为严格的气孔策略。4) CO2浓度增加及气温上升的促进作用无法抵消干旱胁迫加剧对树木生理机能的不利影响, 长期干旱胁迫可能导致退化树木生长进一步衰退。

本文引用格式

王堃莹 , 邱贵福 , 刘子赫 , 孟君 , 刘宇轩 , 贾国栋 . 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节[J]. 植物生态学报, 2025 , 49(2) : 343 -355 . DOI: 10.17521/cjpe.2023.0363

Abstract

Aims As one of the important species in shelterbelt forests of the northern China, the large-scale decline of the Populus simonii has a serious impact on the healthy development of the ecosystem and the sustainable management of shelterbelt forests, and the investigation on the causes of P. simonii degradation in the context of climate change can provide a reference for the management of plantation forests.

Methods The study investigated three P. simonii plantation forests with different degradation levels in Zhangbei, and compared their basal area increment (BAI), intrinsic water use efficiency (iWUE), tree ring carbon stable isotopes ratio, and stomatal regulation strategies, in order to analyze the impacts of climate change on the growth of P. simonii and its intrinsic water use efficiency.

Important findings The results showed that: 1) CO2 concentration and air temperature were the main drivers of iWUE changes, with a significant increasing trend in iWUE under the combined effects of increasing atmospheric CO2 concentration, climate change and physiological conditions. 2) The tree growth in the three P. simonii stands with different levels of degradation was mainly determined by air temperature, and in most cases the increase in iWUE did not promote tree growth. 3) Declining trees were more sensitive to drought in the context of climate change, and more stringent stomatal strategies were adopted by highly degraded stands under drought stress. 4) The negative effects of increased drought stress on tree physiology could not be counteracted by increased CO2 concentrations and increased air temperatures, and prolonged drought stress might lead to further decline in the growth of degraded trees.

[an error occurred while processing this directive]

参考文献

[1] Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
[2] Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011). Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biology, 17, 2095-2112.
[3] Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Korner C (2013). Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101, 1509-1519.
[4] Bigler C, Veblen TT (2009). Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos, 118, 1130-1138.
[5] Boysen LR, Lucht W, Gerten D, Heck V, Lenton TM, Schellnhuber HJ (2017). The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future, 5, 463-474.
[6] Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008). Plantation forests and biodiversity: oxymoron or opportunity? Biodiversity and Conservation, 17, 925-951.
[7] Chen XJ, Yuan YJ, Chen F, Zhang RB, Zhang TW (2008). Analysis of tree-ring width chronology characteristics from eastern area on north slope of Tianshan Mountains. Journal of Desert Research, 28, 833-841.
  [陈向军, 袁玉江, 陈峰, 张瑞波, 张同文 (2008). 天山北坡东部地区树轮宽度年表特征分析. 中国沙漠, 28, 833-841.]
[8] Cowan IR (1978). Stomatal behaviour and environment. Advances in Botanical Research, 4, 117-228.
[9] Du MM, Zhang F, Gou XH, Liu LY, Xia JQ, Wu XP (2022). Different responses of radial growth of Picea crassifolia to climate warming in the middle and eastern Qilian Mountains. Journal of Glaciology and Geocryology, 44(1), 14-23.
  [杜苗苗, 张芬, 勾晓华, 刘兰娅, 夏敬清, 吴秀平 (2022). 祁连山中东部青海云杉径向生长对气候变暖的响应差异. 冰川冻土, 44(1), 14-23.]
[10] Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, van Oosterzee P, MacKenzie J, Morning HS, Burrows D (2017). Large-scale dieback of mangroves in Australia. Marine and Freshwater Research, 68, 1816-1829.
[11] Fang SZ (2008). Silviculture of poplar plantation in China: a review. Chinese Journal of Applied Ecology, 19, 2308-2316.
  [方升佐 (2008). 中国杨树人工林培育技术研究进展. 应用生态学报, 19, 2308-2316.]
[12] Farquhar GD, And JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
[13] Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 9, 121-137.
[14] Fernández ME, Gyenge J, Schlichter T (2009). Water flux and canopy conductance of natural versus planted forests in Patagonia, South America. Trees, 23, 415-427.
[15] Granda E, Rossatto DR, Camarero JJ, Voltas J, Valladares F (2014). Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia, 174, 307-317.
[16] Griffis TJ (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174, 85-109.
[17] Guariguata MR, Ostertag R (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206.
[18] Guo D, Kasim T, Wu XL, Zhang TW, Wang ZP, Abudureheman R, Ayimuguli S (2022). Applicability of four meteorological drought indices in Xinjiang. Desert and Oasis Meteorology, 16(3), 90-101.
  [郭冬, 吐尔逊·哈斯木, 吴秀兰, 张同文, 王兆鹏, 如先古丽·阿不都热合曼, 阿依姆古丽·赛麦提 (2022). 四种气象干旱指数在新疆区域适用性研究. 沙漠与绿洲气象, 16(3), 90-101.]
[19] Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007). Response of forest trees to increased atmospheric CO2. Critical Reviews in Plant Sciences, 26, 265-283.
[20] Jump AS, Hunt JM, Pe?uelas J (2006). Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12, 2163-2174.
[21] Kharuk VI, Ranson KJ, Oskorbin PA, Im ST, Dvinskaya ML (2013). Climate induced birch mortality in Trans-Baikal lake region, Siberia. Forest Ecology and Management, 289, 385-392.
[22] Kimak A, Leuenberger M (2015) Are carbohydrate storage strategies of trees traceable by early-latewood carbon isotope differences? Trees, 29, 859-870.
[23] K?rner C (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393-411.
[24] Kwak JH, Lim SS, Lee KS, Viet HD, Matsushima M, Lee KH Jung K, Kim HY, Lee SM, Chang S, Choi WJ (2016). Temperature and air pollution affected tree ring δ13C and water-use efficiency of pine and oak trees under rising CO2 in a humid temperate forest. Chemical Geology, 420, 127-138.
[25] Lavergne A, Voelker S, Csank A, Graven H, de Boer HJ, Daux V, Robertson I, Dorado-Li?án I, Martínez-Sancho E, Battipaglia G, Bloomfield KJ, Still CJ, Meinzer FC, Dawson TE, Camarero J, et al. (2020). Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytologist, 225, 2484-2497.
[26] Leavitt SW (2010). Tree-ring C-H-O isotope variability and sampling. Science of the Total Environment, 408, 5244-5253.
[27] Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 203, 94-109.
[28] Li S, Luo YQ, Wu J, Zong SX, Yao GL, Li Y, Liu YM, Zhang YR (2009). Community structure and biodiversity in plantations and natural forests of seabuckthorn in southern Ningxia, China. Forestry Studies in China, 11, 49-54.
[29] Liu N, Sun PS, Liu SR (2012). Research advances in simulating land water-carbon coupling. Chinese Journal of Applied Ecology, 23, 3187-3196.
  [刘宁, 孙鹏森, 刘世荣 (2012). 陆地水-碳耦合模拟研究进展. 应用生态学报, 23, 3187-3196.]
[30] Liu XH, Wang WZ, Xu GB, Zeng XM, Wu GJ, Zhang XW, Qin DH (2014). Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China:evaluation via δ13C and δ18O analysis of tree rings. Tree Physiology, 34, 966-980.
[31] Liu Y, Li P, Shen B, Feng ZH, Liu Q, Zhang Y (2017). Effects of drought stress on Bothriochloa ischaemum water-use efficiency based on stable carbon isotope. Acta Ecologica Sinica, 37, 3055-3064.
  [刘莹, 李鹏, 沈冰, 冯朝红, 刘琦, 张祎 (2017). 采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率. 生态学报, 37, 3055-3064.]
[32] Lucarini V, Ragone F, Lunkeit F (2017). Predicting climate change using response theory: global averages and spatial patterns. Journal of Statistical Physics, 166, 1036-1064.
[33] Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014). A new look at water transport regulation in plants. New Phytologist, 204, 105-115.
[34] Maseyk K, Hemming D, Angert A, Leavitt SW, Yakir D (2011). Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia, 167, 573-585.
[35] Matsuo K, Heki K (2012). Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE. Geophysical Journal International, 190, 1495-1506.
[36] Nardini A, Casolo V, Dal Borgo A, Savi T, Stenni B, Bertoncin P, Zini LC, McDowell NG (2016). Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell & Environment, 39, 618-627.
[37] Oishi AC, Miniat CF, Novick KA, Brantley ST, Vose JM, Walker JT (2018). Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agricultural and Forest Meteorology, 252, 269-282.
[38] Pe?uelas J, Canadell JG, Ogaya R (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20, 597-608.
[39] Pe?uelas J, Hunt JM, Ogaya R, Jump AS (2008). Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14, 1076-1088.
[40] Phillips OL, Araga?o LEOC, Lewis SL, Fisher JB, Lloyd J, Lo?pez-Gonza?lez G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347.
[41] Resco V, Ferrio JP, Carreira JA, Calvo L, Casals P, Ferrero-Serrano á, Marcos E, Moreno JM, Ramírez DA, Sebastià MT, Valladares F, Williams DG (2011). The stable isotope ecology of terrestrial plant succession. Plant Ecology & Diversity, 4, 117-130.
[42] Saurer M, Siegwolf RT, Schweingruber FH (2004). Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 10, 2109-2120.
[43] Shen XJ, Liu BH, Xue ZS, Jiang M, Lu XG, Zhang Q (2019). Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Science of the Total Environment, 666, 1169-1177.
[44] Sun LB (2021). Study on Degradation Mechanism of Populus simonii Plantation in Bashang Area. PhD dissertation, Beijing Forestry University. Beijing.
  [孙立博 (2021). 坝上地区小叶杨人工林退化机制研究. 博士学位论文, 北京林业大学, 北京.]
[45] Sun LB, Chang XM, Yu XX, Jia GD, Chen LH, Liu ZQ, Zhu XH (2019). Precipitation and soil water thresholds associated with drought-induced mortality of farmland shelter forests in a semi-arid area. Agriculture, Ecosystems & Environment, 284, 106595. DOI: 10.1016/j.agee.2019.106595.
[46] Sun SJ, Li CY, He CX, Zhang JS, Meng P (2017). Retrospective analysis of the poplar plantation degradation based on stable carbon isotope of tree rings in Zhangbei County, Hebei, China. Chinese Journal of Applied Ecology, 28, 2119-2127.
  [孙守家, 李春友, 何春霞, 张劲松, 孟平 (2017). 基于树轮稳定碳同位素的张北杨树防护林退化原因解析. 应用生态学报, 28, 2119-2127.]
[47] van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2015). No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience, 8, 24-28.
[48] Voelker SL, Brooks JR, Meinzer FC, Anderson R, Bader MKF, Battipaglia G, Becklin KM, Beerling D, Bert D, Betancourt JL, Dawson TE, Domec JC, Guyette RP, K?rner C, Leavitt SW, et al. (2016). A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change Biology, 22, 889-902.
[49] Voelker SL, Muzika RM, Guyette RP, Stambaugh MC (2006). Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecological Monographs, 76, 549-564.
[50] Voltas J, Camarero JJ, Carulla D, Aguilera M, Ortiz A, Ferrio JP (2013). A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell & Environment, 36, 1435-1448.
[51] Wang WZ, Liu XH, An WL, Xu GB, Zeng XM (2012). Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in Northwestern China: causes and implications. Forest Ecology and Management, 275, 14-22.
[52] Wang WZ, McDowell NG, Pennington S, Grossiord C, Leff RT, Sengupta A, Ward ND, Sezen UU, Rich R, Megonigal JP, Stegen JC, Bond-Lamberty B, Bailey V (2020). Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. Agricultural and Forest Meteorology, 295, 108163. DOI: 10.1016/j.agrformet.2020.108163.
[53] Wehr R, Commane R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Saleska SR, Wofsy SC (2017). Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences, 14, 389-401.
[54] Wei J, Ma ZG (2003). Comparison of Palmer drought index, surface wetness index and precipitation anomaly. Acta Geographica Sinica, 58(S1), 117-124.
  [卫捷, 马柱国 (2003). Palmer干旱指数、地表湿润指数与降水距平的比较. 地理学报, 58(S1), 117-124.]
[55] Wei JS, Li ZS, Feng XY, Zhang Y, Chen WL, Wu X, Jiao L, Wang XC (2018). Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review. Chinese Journal of Applied Ecology, 29, 2433-2444.
  [韦景树, 李宗善, 冯晓玙, 张园, 陈维梁, 伍星, 焦磊, 王晓春 (2018). 黄土高原人工刺槐林生长衰退的生态生理机制. 应用生态学报, 29, 2433-2444.]
[56] Wei P, Xu L, Pan XB, Hu Q, Li QY, Zhang XT, Shao CX, Wang CC, Wang XX (2020). Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China. Catena, 185, 104298. DOI: 10.1016/j.catena.2019.104298.
[57] Wu GJ, Liu XH, Chen T, Xu GB, Wang WZ, Zeng XM, Wang B, Zhang XW (2015). Long-term variation of tree growth and intrinsic water-use efficiency in Schrenk spruce with increasing CO2 concentration and climate warming in the western Tianshan Mountains, China. Acta Physiologiae Plantarum, 37, 150. DOI: 10.1007/s11738-015-1903-y.
[58] Zadworny M, Jagodziński AM, ?akomy P, Mucha J, Oleksyn J, Rodríguez-Calcerrada J, Ufnalski K (2019). Regeneration origin affects radial growth patterns preceding oak decline and death—Insights from tree-ring δ13C and δ18O. Agricultural and Forest Meteorology, 278, 107685. DOI: 10.1016/j.agrformet.2019.107685.
[59] Zhu JJ, Zheng X (2019). The prospects of development of the Three-North Afforestation Program (TNAP): on the basis of the results of the 40-year construction general assessment of the TNAP. Chinese Journal of Ecology, 38, 1600-1610.
  [朱教君, 郑晓 (2019). 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38, 1600-1610.]
文章导航

/

[an error occurred while processing this directive]