Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (8): 849-858.DOI: 10.3724/SP.J.1258.2012.00849
• Research Articles • Previous Articles Next Articles
ZHANG Hong-Xiang*(), TIAN Yu, ZHOU Dao-Wei, ZHENG Wei, WANG Min-Ling
Received:
2011-11-08
Accepted:
2012-04-05
Online:
2012-11-08
Published:
2012-08-21
Contact:
ZHANG Hong-Xiang
ZHANG Hong-Xiang, TIAN Yu, ZHOU Dao-Wei, ZHENG Wei, WANG Min-Ling. Research on modeling germination response to salinity of barley seeds[J]. Chin J Plant Ecol, 2012, 36(8): 849-858.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00849
Fig. 1 Germination courses for two varieties of barley ‘Cask’ and ‘County’ cultured in isotonic NaCl and polyethylene glycol (PEG) solutions at four temperatures.
品种 Variety | 温度 Temperature (℃) | 渗透调节物质 Osmotica | 水势常数 θH (MPa·h) | 最低水势 Ψb (50) (MPa) | 误差 σΨb (MPa) | R2 |
---|---|---|---|---|---|---|
‘Cask’ | 5 | NaCl | 428 | -2.51 | 0.63 | 0.83 |
PEG | 208 | -1.22 | 0.61 | 0.66 | ||
12 | NaCl | 115 | -1.70 | 0.71 | 0.85 | |
PEG | 65 | -0.77 | 0.22 | 0.89 | ||
20 | NaCl | 73 | -1.72 | 1.09 | 0.84 | |
PEG | 52 | -1.23 | 0.64 | 0.68 | ||
27 | NaCl | 36 | -0.56 | 1.21 | 0.73 | |
PEG | 34 | -0.65 | 0.87 | 0.67 | ||
‘County’ | 5 | NaCl | 355 | -2.55 | 0.83 | 0.58 |
PEG | 184 | -1.32 | 0.56 | 0.62 | ||
12 | NaCl | 115 | -1.93 | 1.18 | 0.65 | |
PEG | 63 | -0.86 | 0.55 | 0.57 | ||
20 | NaCl | 36 | -1.35 | 0.72 | 0.73 | |
PEG | 29 | -1.01 | 0.49 | 0.67 | ||
27 | NaCl | 20 | -0.80 | 0.65 | 0.70 | |
PEG | 30 | -1.16 | 0.74 | 0.51 |
Table 1 Parameter estimate of hydrotime model for seed germination of two varieties of barley under different salinities, polyethylene glycol (PEG) solutions and four temperatures
品种 Variety | 温度 Temperature (℃) | 渗透调节物质 Osmotica | 水势常数 θH (MPa·h) | 最低水势 Ψb (50) (MPa) | 误差 σΨb (MPa) | R2 |
---|---|---|---|---|---|---|
‘Cask’ | 5 | NaCl | 428 | -2.51 | 0.63 | 0.83 |
PEG | 208 | -1.22 | 0.61 | 0.66 | ||
12 | NaCl | 115 | -1.70 | 0.71 | 0.85 | |
PEG | 65 | -0.77 | 0.22 | 0.89 | ||
20 | NaCl | 73 | -1.72 | 1.09 | 0.84 | |
PEG | 52 | -1.23 | 0.64 | 0.68 | ||
27 | NaCl | 36 | -0.56 | 1.21 | 0.73 | |
PEG | 34 | -0.65 | 0.87 | 0.67 | ||
‘County’ | 5 | NaCl | 355 | -2.55 | 0.83 | 0.58 |
PEG | 184 | -1.32 | 0.56 | 0.62 | ||
12 | NaCl | 115 | -1.93 | 1.18 | 0.65 | |
PEG | 63 | -0.86 | 0.55 | 0.57 | ||
20 | NaCl | 36 | -1.35 | 0.72 | 0.73 | |
PEG | 29 | -1.01 | 0.49 | 0.67 | ||
27 | NaCl | 20 | -0.80 | 0.65 | 0.70 | |
PEG | 30 | -1.16 | 0.74 | 0.51 |
Fig. 2 Germination rate plotted against external salinity concentration for two varieties of barley ‘Cask’ and ‘County’ at four temperatures (mean ± SE).
品种 Cultivar | 温度 Temperature (℃) | 萌发率 Germination (%) | 盐度常数 θS (mmol·L-1·d-1) | 最高盐度 Sm (mmol·L-1) | R2 | p |
---|---|---|---|---|---|---|
‘Cask’ | 5 | 1 | 3 333.3 | 621.3 | 0.99 | 0.000 8 |
50 | 5 000.0 | 712.0 | 0.98 | 0.000 8 | ||
12 | 1 | 833.3 | 552.8 | 0.98 | 0.001 0 | |
50 | 909.1 | 392.6 | 0.98 | 0.093 4 | ||
20 | 1 | 500.0 | 612.4 | 0.99 | 0.000 6 | |
50 | 1 000.0 | 573.0 | 0.99 | 0.039 5 | ||
27 | 1 | 416.7 | 609.6 | 0.99 | 0.000 7 | |
50* | ||||||
‘County’ | 5 | 1 | 3 333.3 | 796.0 | 0.99 | 0.000 3 |
50 | 3 333.3 | 638.0 | 0.94 | 0.006 7 | ||
12 | 1 | 769.2 | 600.3 | 0.96 | 0.003 1 | |
50 | 1 000.0 | 558.5 | 0.89 | 0.015 6 | ||
20 | 1 | 357.1 | 528.9 | 0.96 | 0.003 5 | |
50 | 370.4 | 382.9 | 0.99 | 0.067 2 | ||
27 | 1 | 227.3 | 390.9 | 0.88 | 0.223 7 | |
50* |
Table 2 Parameter estimate of salinity model for seed germination of two varieties of barley under different salinities and four temperatures
品种 Cultivar | 温度 Temperature (℃) | 萌发率 Germination (%) | 盐度常数 θS (mmol·L-1·d-1) | 最高盐度 Sm (mmol·L-1) | R2 | p |
---|---|---|---|---|---|---|
‘Cask’ | 5 | 1 | 3 333.3 | 621.3 | 0.99 | 0.000 8 |
50 | 5 000.0 | 712.0 | 0.98 | 0.000 8 | ||
12 | 1 | 833.3 | 552.8 | 0.98 | 0.001 0 | |
50 | 909.1 | 392.6 | 0.98 | 0.093 4 | ||
20 | 1 | 500.0 | 612.4 | 0.99 | 0.000 6 | |
50 | 1 000.0 | 573.0 | 0.99 | 0.039 5 | ||
27 | 1 | 416.7 | 609.6 | 0.99 | 0.000 7 | |
50* | ||||||
‘County’ | 5 | 1 | 3 333.3 | 796.0 | 0.99 | 0.000 3 |
50 | 3 333.3 | 638.0 | 0.94 | 0.006 7 | ||
12 | 1 | 769.2 | 600.3 | 0.96 | 0.003 1 | |
50 | 1 000.0 | 558.5 | 0.89 | 0.015 6 | ||
20 | 1 | 357.1 | 528.9 | 0.96 | 0.003 5 | |
50 | 370.4 | 382.9 | 0.99 | 0.067 2 | ||
27 | 1 | 227.3 | 390.9 | 0.88 | 0.223 7 | |
50* |
Fig. 3 Comparison of germination time between the real data (50% germination) and the data predicted by hydrotime model and salinity model for two varieties of barley.
Fig. 4 Difference of germination rate between binate iso-osmotic NaCl and polyethylene glycol (PEG) plotted against external water potential for two varieties of barley ‘Cask’ and ‘County’ at four temperatures.
[1] | Bradford KJ (1990). A water relations analysis of seed germination rates. Plant Physiology, 94, 840-849. |
[2] | Cao MH (曹满航), Li J (李进), Zhang T (张婷), Zhuang WW (庄伟伟), Feng WJ (冯文娟), Li YP (李茵萍) (2011). Seed germination of Ammodendron argenteum under tem- perature, drought and salt stress. Acta Botanica Boreali- Occidentalia Sinica (西北植物学报), 31, 746-753. (in Chinese with English abstract) |
[3] | Cheng ZY, Bradford KJ (1999). Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50, 89-99. |
[4] | Dodd GL, Donovan LA (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany, 86, 1146-1153. |
[5] | Duan DY (段德玉), Liu XJ (刘小京), Feng FL (冯凤莲), Li CZ (李存桢) (2003). Effect of salinities on seed germination of halophyte Suaeda salsa. Chinese Agricultural Science Bulletin (中国农学通报), 19(6), 168-172. (in Chinese with English abstract) |
[6] | Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006). The short-term growth response to salt of the developing barley leaf. Journal of Experimental Botany, 57, 1079-1095. |
[7] | Gulzar S, Khan MA (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 87, 319-324. |
[8] | Gummerson RJ (1986). The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37, 729-741. |
[9] | Hegarty TW (1976). Effects of fertilizer on the seedling emergence of vegetable crops. Journal of the Science of Food and Agriculture, 27, 962-968. |
[10] | Kebreab E, Murdoch AJ (1999). Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany, 50, 655-664. |
[11] | Larsen SU, Bailly C, Côme D, Corbineau F (2004). Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Science Research, 14, 35-50. |
[12] | Li Y (李彦), Zhang YP (张英鹏), Sun M (孙明), Gao BM (高弼模) (2008). Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chinese Agricultural Science Bulletin (中国农学通报), 24, 258-265. (in Chinese with English abstract) |
[13] | Masuda M, Maki M, Yahara T (1999). Effects of salinity and temperature on seed germination in a Japanese endangered halophyte Triglochin maritimum (Juncaginaceae). Journal of Plant Research, 112, 457-461. |
[14] |
Meyer SE, Allen PS (2009). Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research, 19, 225-239.
DOI URL |
[15] | Munns R (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environments, 16, 15-24. |
[16] | Neumann P (1997). Salinity resistance and plant growth revisited. Plant, Cell & Environment, 20, 1193-1198. |
[17] | Orozco-Segovia A, González-Zertuche L, Mendoza A, Orozco S (1996). A mathematical model that uses Gaussian distribution to analyze the germination of Manfreda brachystachya (Agavaceae) in a thermogradient. Physiologia Plantarum, 98, 431-438. |
[18] | Qu XX (渠晓霞), Huang ZY (黄振英) (2005). The adaptive strategies of halophyte seed germination. Acta Ecologica Sinica (生态学报), 25, 2389-2398. (in Chinese with English abstract) |
[19] | Rowse HR, Finch-Savage WE (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist, 158, 101-108. |
[20] | Su YQ (苏永全), Lü YC (吕迎春) (2007). Effects of salt stress on plants. Gansu Agricultural Science and Technology (甘肃农业科技), 5(3), 23-27. (in Chinese with English abstract) |
[21] | Tobe K, Zhang LP, Qiu GYY, Shimizu H, Omasa K (2001). Characteristics of seed germination in five non-halophytic Chinese desert shrub species. Journal of Arid Environments, 47, 192-201. |
[22] | Welbaum GE, Tissaoui T, Bradford KJ (1990). Water relations of seed development and germination in muskmelon (Cucumis melo L.). 3. Sensitivity of germination to water potential and abscisic acid during development. Plant Physiology, 92, 1029-1037. |
[23] | Xie DY (谢德意), Wang HP (王惠萍), Wang FX (王付欣), Feng FQ (冯复全) (2000). Effects of cotton seeds germination and seedling growth under salt stress. Seed (种子), ( 3), 10-12. (in Chinese with English abstract) |
[24] | Xu X (许兴), Li SH (李树华), Hui HX (惠红霞), Mi HL (米海莉) (2002). Effect of NaCl stress on growth, chlorophyll content and K+, Na+ absorption of spring wheat seedlings . Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 22, 278-284. (in Chinese with English abstract) |
[25] | Yan SG (阎顺国), Shen YY (沈禹颖) (1996). Effects of ecological factors on salt-tolerance of Puccinellia tenuiflora seeds during germination. Acta Phytoecologica Sinica (植物生态学报), 20, 414-422. (in Chinese with English abstract) |
[26] | Yang SH (杨少辉), Ji J (季静), Wang G (王罡), Song YJ (宋英今) (2006). Effects of salt stress on plants. Molecular Plant Breeding (分子植物育种), 4(S3), 139-142. (in Chinese with English abstract) |
[27] | Zhang HX, Irving LJ, McGill C, Matthew C, Zhou DW, Kemp P (2010). The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Annals of Botany, 106, 1027-1035. |
[28] | Zhao TF (赵檀方), Yan XX (闫先喜), Hu YJ (胡延吉) (1994). Effect of salt stress on barley seed imbibition germination and structure of root tip cells. Barley Science (大麦科学), 41(4), 17-20. (in Chinese) |
[1] | Wen-bo Li Long Sun Hu Lou Cheng Yu Yu Han Tong-xin HU. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | Zhiyang Zhang Yinghui Zhao Zhen Zhen. Dynamic monitoring of carbon storage of the terrestrial ecosystem in Songhua River Basin from 1986 to 2022 [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[4] | . Difference of seed germination characteristics and dormancy release method of Schoenoplectiella mucronata [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[5] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[6] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[7] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[8] | WANG Fu-Biao, YE Zi-Piao. A review on light response models of electron transport rates of plant [J]. Chin J Plant Ecol, 2024, 48(3): 287-305. |
[9] | Zumureti YUSUFUJANG, DONG Zheng-Wu, CHENG Peng, YE Mao, LIU Sui-Yun-Hao, LI Sheng-Yu, ZHAO Xiao-Ying. Response of water use strategies of Tamarix ramosissima to nebkhas accumulation process [J]. Chin J Plant Ecol, 2024, 48(1): 113-126. |
[10] | LI Bo-Xin, JIANG Chao, SUN Osbert Jianxin. Comprehensive assessment of vegetation carbon use efficiency in southwestern China simulated by CMIP6 models [J]. Chin J Plant Ecol, 2023, 47(9): 1211-1224. |
[11] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[12] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[13] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[14] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[15] | ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin. Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons [J]. Chin J Plant Ecol, 2023, 47(4): 491-505. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn