[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Reviews

Advances in ecological studies of epiphytes using canopy cranes

Expand
  • 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2016-05-25

Abstract

Forest canopies are one of the most species-rich habitats, but among the least explored in the biosphere. They play a crucial role in the process of material and energy exchange between the forest and atmosphere. Individual ecosystem members (e.g., epiphytes) and the ecological function of canopies have been given insufficient attention because of inaccessibility. Canopy cranes have been successfully used to guarantee non-destructive and reiterated sampling of epiphytes, thus offering a top-down perspective of the entire canopy. These cranes have become the symbol of canopy research and enable epiphyte research. Globally, western developed countries have conducted many studies of diversity and spatial distributions of epiphytes using canopy cranes, thus accumulating an abundance of valuable results. This review summarizes the structure, development history, and distribution of canopy cranes as well as general information about international canopy research organizations. Ecological studies of epiphytes performed around the world using these canopy cranes are also reviewed. Additionally, the development of canopy ecology and the construction of canopy cranes in China are introduced briefly. In analyzing current research trends in ecological studies of epiphytes in China and globally, the following aspects were considered: biodiversity, spatial patterns and maintenance mechanisms, ecological adaptations of epiphytes, their relationship with canopy animals, and their responses to climate change.

Cite this article

Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI . Advances in ecological studies of epiphytes using canopy cranes[J]. Chinese Journal of Plant Ecology, 2016 , 40(5) : 508 -522 . DOI: 10.17521/cjpe.2015.0424

[an error occurred while processing this directive]

References

1 Adibah MR, Ainuddin A (2011). Epiphytic plants responses to light and water stress.Asian Journal of Plant Sciences, 10(2), 97-107.
2 Anhuf D, Winkler H (1999). Geographical and ecological settings of the Surumoni-crane-project (Upper Orinoco, Estado Amazonas, Venezuela).Anzeiger, 135, 3-23.
3 Antoine ME, McCune B (2004). Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest.The Bryologist, 107, 163-172.
4 Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Korner C (2013). Central European hardwood trees in a high-CO2 future: Synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101, 1509-1519.
5 Bartels SF, Chen HYH (2012). Mechanisms regulating epiphytic plant diversity.Critical Reviews in Plant Sciences, 31, 391-400.
6 Basset Y, Horlyck V, Wright SJ (2003). Studying Forest Canopies from Above: The International Canopy Crane Network. Smithsonian Tropical Research Institute, Ancon, Republic of Panama.
7 Batke S (2012). Epiphytes: A study of the history of forest canopy research.The Plymouth Student Scientist, 5, 253-268.
8 Benzing DH (2004). Vascular epiphytes. In: Lowman MD, Rinker HB eds. Forest Canopies. 2nd edn. Springer Verlag, Berlin.
9 Benzing DH (2012). Air Plants: Epiphytes and Aerial Gardens. Cornell University Press, New York.
10 Bluthgen N, Verhaagh M, Goitia W, Jaffe K, Morawetz W, Barthlott W (2000). How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and homopteran honeydew.Oecologia, 125, 229-240.
11 Bruijnzeel L, Mulligan M, Scatena FN (2011). Hydrometeorology of tropical montane cloud forests: Emerging patterns.Hydrological Processes, 25, 465-498.
12 Burns KC, Zotz G (2010). A hierarchical framework for investigating epiphyte assemblages: Networks, meta- communities, and scale.Ecology, 91, 377-385.
13 Cardelus CL (2010). Litter decomposition within the canopy and forest floor of three tree species in a tropical lowland rain forest, Costa Rica.Biotropica, 42, 300-308.
14 Carlsen M (2000). Structure and diversity of the vascular epiphyte community in the overstory of a tropical rain forest in Surumoni, Amazonas State, Venezuela.Selbyana, 21, 7-10.
15 Cede?o A, Mérida T, Zegarra J (1999). Ant gardens of Surumoni, Venezuela.Selbyana, 1, 125-132.
16 Chen L, Liu WY, Wang GS (2010). Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China.Ecological Research, 25, 315-325.
17 Corlett RT, Primack RB (2011). Tropical Rain Forests An Ecological and Biogeographical Comparison. 2nd edn. Wiley-Blackwell, Oxford, UK.
18 Crawley MJ (1997). Plant Ecology. Blackwell Scientific, Oxford, UK.
19 Einzmann HJR, Beyschlag J, Hofhansl F, Wanek W, Zotz G (2014). Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.AoB Plants, doi: 10.1093/aobpla/pluo73.
20 Ellwood MDF, Foster WA (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy.Nature, 429, 549-551.
21 Ellwood MDF, Jones DT, Foster WA (2002). Canopy ferns in lowland dipterocarp forest support a prolific abundance of ants, termites, and other invertebrates.Biotropica, 34, 575-583.
22 Engwald S, Schmit-Neuerburg V, Barthlott W (2000). Epiphytes in Rain Forests of Venezuela-Diversity and Dynamics of A Biocenosis. Proceedings of the First Symposium by the AFW Foundation, Hoheneim.
23 Fan ZX, Br?uning A, Thomas A, Li JB, Cao KF (2011). Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961-2004.International Journal of Climatology, 31, 2078-2090.
24 Fayle TM, Chung AYC, Dumbrell AJ, Eggleton P, Foster WA (2009). The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia.Biotropica, 41, 676-681.
25 Freiberg M, Turton SM (2007). Importance of drought on the distribution of the birds nest fern, Asplenium nidus, in the canopy of a lowland tropical rainforest in north-eastern Australia.Austral Ecology, 32, 70-76.
26 Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Cameron KM (2015). Orchid phylogenomics and multiple drivers of their extraordinary diversification.Proceedings of the Royal Society B: Biological Sciences, 282, 1-10.
27 Gotsch SG, Nadkarni N, Darby A, Glunk A, Dix M, Davidson K, Dawson TE (2015). Life in the treetops: Ecophysi- ological strategies of canopy epiphytes in a tropical mon- tane cloud forest.Ecological Monographs, 85, 393-412.
28 Gravendeel B, Smithson A, Slik FJ, Schuiteman A (2004). Epiphytism and pollinator specialization: Drivers for orchid diversity?Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 1523-1535.
29 Harrison R (2006). A severe drought in Lambir Hills National Park.Ecological Studies, 51-64.
30 Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity.Science, 348, 336-340.
31 Hopkin M (2005). Biodiversity and climate form focus of forest canopy plan.Nature, 436, 452.
32 Hu YH, Lan GY, Sha LQ, Cao M, Tang Y, Xu DP (2012). Strong neutral spatial effects shape tree species distributions across life stages at multiple scales.PLoS ONE, 7(5), e38247. doi: 10.1371/journal.pone.0038247.
33 Ichie T, Itioka T, Itoh A (2009). Lambir Hills National Park (Malaysia)(From field research sites (12)).Japanese Journal of Ecology, 59, 227-232.
34 Inoue T, Yumoto T, Hamid AA, Seng LH, Ogino K (1995). Construction of a canopy observation system in a tropical rainforest of Sarawak.Selbyana, 16, 100-111.
35 Jiang H, Huang YH, Zhou GY, Hu XY, Liu SZ, Tang XL (2012). Acclimation in leaf morphological and eco-phy- siological characteristics of different canopy-dwelling epiphytes in a lower subtropical evergreen broad-leaved forest.Plant Science Journal, 30, 250-260. (in Chinese with English abstract)[江浩, 黄钰辉, 周国逸, 胡晓颖, 刘世忠, 唐旭利 (2012). 亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究. 植物科学学报, 30, 250-260.]
36 Johansson D (1974). Ecology of Vascular Epiphytes in West African Rain Forest. Uppsala University, Uppsala, Sweden.
37 José Ibrahin HR (2004). Characteristics of canopy plant substratum in a low land humid tropical forest (Upper Orinoco, Venezuela).Acta Científica Venezolana, 55, 35-43.
38 Kalyuzhny M, Kadmon R, Shnerb NM (2015). A neutral theory with environmental stochasticity explains static and dynamic properties of ecological communities.Ecology Letters, 18, 572-580.
39 Kelly DL, O’Donovan G, Feehan J, Murphy S, Drangeid SO, Marcano-Berti L (2004). The epiphyte communities of a montane rain forest in the Andes of Venezuela: Patterns in the distribution of the flora.Journal of Tropical Ecology, 20, 643-666.
40 Kennedy D, Norman C (2005). What don’t we know?Science, 309, 78-102.
41 Kromer T, Acebey A, Kluge J, Kessler M (2013). Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico.Flora, 208, 197-210.
42 Kr?mer T, Kessler M, Gradstein SR (2007). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: The importance of the understory.Plant Ecology, 189, 261-278.
43 Laidlaw M, Kitching R, Goodall K, Small A, Stork N (2007). Temporal and spatial variation in an Australian tropical rainforest.Austral Ecology, 32(1), 10-20.
44 Lan GY, Chen W, Tao ZL, Xie GS, Lin WF (2010). A comparison study on the tropical dipterocarp rain forests of Hainan and Xishuangbanna.Acta Botanica Boreali- Occidentalia Sinica, 30, 806-812. (in Chinese with English abstract)[兰国玉, 陈伟, 陶忠良, 谢贵水, 林位夫 (2010). 海南与西双版纳龙脑香热带雨林比较研究. 西北植物学报, 30, 806-812.]
45 Laube S, Zotz G (2006a). Long-term changes of the vascular epiphyte assemblage on the palm Socratea exorrhiza in a lowland forest in Panama.Journal of Vegetation Science, 17, 307-314.
46 Laube S, Zotz G (2006b). Neither host-specific nor random: Vascular epiphytes on three tree species in a Panamanian lowland forest.Annal of Botany, 97, 1103-1114.
47 Lawton RO, Nair US, Pielke SR, Welch RM (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests.Science, 294, 584-587.
48 Li S, Liu WY, Shi XM, Liu S, Hu T, Huang JB, Wu CS (2015). Responses of the distribution of four epiphytic cyanolichens to habitat changes in subtropical forests.Chinese Journal of Plant Ecology, 39, 217-228. (in Chinese with English abstract)[李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 武传胜 (2015). 亚热带森林系统4种附生蓝藻地衣的分布及对生境变化的响应. 植物生态学报, 39, 217-228.]
49 Li HM, Ma Y, Aide TM, Liu WJ (2008). Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. Forest Ecology and Management, 255, (1), 16-24.
50 Li S, Liu WY, Wang LS, Ma WZ, Song L (2011). Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, SW China.Forest Ecology and Management, 261, 1760-1770.
51 Li S, Liu WY, Li DW (2013a). Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China.Ecological Indicators, 29, 93-104.
52 Li S, Liu WY, Li DW (2013b). Epiphytic lichens in subtropical forest ecosystems in southwest China: Species diversity and implications for conservation.Biological Conserva- tion, 159, 88-95.
53 Li S, Liu WY, Li DW, Song L, Shi XM, Lu HZ (2015). Species richness and vertical stratification of epiphytic lichens in subtropical primary and secondary forests in southwest China.Fungal Ecology, 17, 30-40.
54 Liang J, Zhu H, Wang H, Zhou SS (2007). Changes in species diversity of Parashorea forest in the past 20 years in Xishuangbanna, Yunnan.Chinese Journal of Applied and Environmental Biology,13, 609-614. (in Chinese with English abstract)[梁娟, 朱华, 王洪, 周仕顺 (2007). 西双版纳补蚌地区望天树林近20 a来物种多样性变化研究. 应用与环境生物学报, 13, 609-614.]
55 Liddell MJ, Nieullet N, Campoe OC, Freiberg M (2007). Assessing the above-ground biomass of a complex tropical rainforest using a canopy crane.Austral Ecology, 32, 43-58.
56 Liu GF, Ding Y, Zang RG, Xu YY, Lin C, Li XC (2010a). Di- versity and distribution of vascular epiphytes in the tropi- cal natural coniferous forest of Hainan Island, China.Chinese Journal of Plant Ecology, 34, 1283-1293. (in Chinese with English abstract)[刘广福, 丁易, 臧润国, 许洋瑜, 林崇, 李小成 (2010a). 海南岛热带天然针叶林附生维管植物多样性和分布. 植物生态学报, 34, 1283-1293.]
57 Liu GF, Zang RG, Ding Y, Wang WY, Li RC, Chen SW, Zhou ZL (2010b). Diversity and distribution of epiphytic orchids in different types of old-growth tropical forests in Bawangling National Nature Reserve, Hainan Island, China.Chinese Journal of Plant Ecology, 34, 396-408. (in Chinese with English abstract)[刘广福, 臧润国, 丁易, 王文毅, 李儒财, 陈少伟, 周照骊 (2010b). 海南霸王岭不同森林类型附生兰科植物的多样性和分布. 植物生态学报, 34, 396-408.]
58 Liu WJ, Li PJ, Duan WP, Liu WY (2014). Dry-season water utilization by trees growing on thin karst soils in a seasonal tropical rainforest of Xishuangbanna, Southwest China.Ecohydrology, 7, 927-935.
59 Lowman MD (2001). Plants in the forest canopy: Some reflections on current research and future direction.Plant Ecology, 153, 39-50.
60 Lowman MD (2009). Canopy research in the twenty-first century: A review of arboreal ecology.Tropical Ecology, 50, 125-136.
61 Lowman MD, Rinker HB (2004). Forest Canopies. 2nd edn. Elsevier Academic Press, London.
62 Lowman MD, Schowalter TD (2012). Plant science in forest canopies—The first 30 years of advances and challenges (1980-2010).New Phytologist, 194, 12-27.
63 Lowman MD, Schowalter TD, Franklin JF (2012). Methods in Forest Canopy Research. University of California Press, Oakland, USA.
64 Lowman M, Devy S, Ganesh T (2013). Treetops at Risk: Challenges of Global Canopy Ecology and Conservation. Springer Science & Business Media, New York.
65 Lu HZ, Liu WY, Yu FH, Song L, Xu XL, Wu CS, Lu SG (2015). Higher clonal integration in the facultative epiphytic fern Selliguea griffithiana growing in the forest canopy compared with the forest understorey.Annals of Botany, 116, 113-122.
66 Lyons B, Nadkarni NM, North MP (2000). Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest.Canadian Journal of Botany, 78, 957-968.
67 Ma KP (2014). Rapid development of biodiversity informatics in China.Biodiversity Science, 22, 251-252. (in Chinese with English abstract)[马克平 (2014). 生物多样性信息学在中国快速发展. 生物多样性, 22, 251-252.]
68 Ma KP (2015). Biodiversity monitoring in China: From CForBio to Sino BON.Biodiversity Science, 23, 1-2. (in Chinese with English abstract)[马克平 (2015). 中国生物多样性监测网络建设:从CForBio到Sino BON. 生物多样性, 23, 1-2.]
69 Ma WZ, Liu WY, Li XJ (2009). Species composition and life forms of epiphytic bryophytes in old-growth and secondary forests in Mt. Ailao, SW China.Cryptogamie Bryologie, 30, 477-500.
70 Maruyama M, Bartolozzi L, Inui Y, Tanaka HO, Hyodo F, Shimizu-Kaya U, Itioka T (2014). A new genus and species of myrmecophilous brentid beetle (Coleoptera: Brentidae) inhabiting the myrmecophytic epiphytes in the Bornean rainforest canopy.Zootaxa, 3786, 73-78.
71 McCune B, Amsberry KA, Camacho FJ, Clery S, Cole C, Emerson C, Felder G, French P, Greene D, Harris R, Hutten M, Larson B, Lesko M, Majors S, Markwell T, Parker GG, Pendergrass K, Peterson EB, Peterson ET, Platt J, Proctor J, Rambo T, Rosso A, Shau D, Turner R, Widmer M (1997). Vertical Profile of epiphytes in a Pacific Northwest old-growth Forest.Northwestence, 71, 145-152.
72 McCune B, Rosentreter R, Ponzetti JM, Shaw DC (2000). Epiphyte habitats in an old conifer forest in Western Washington, U.S.A.The Bryologist, 103, 417-427.
73 Mendieta-Leiva G, Zotz G (2015). A conceptual framework for the analysis of vascular epiphyte assemblages.Perspectives in Plant Ecology Evolution and Systematics, 17, 510-521.
74 Mitchell AW (2001). Introduction—Canopy science: Time to shape up.Plant Ecology, 153, 5-11.
75 Mitchell AW, Secoy K, Jackson T (2002). The Global Canopy Handbook: Techniques of Access and Study Forest Roof. Global Canopy Programme, Oxford, UK.
76 Nadkarni NM (1993). Canopy network.Nature, 366, 502.
77 Nadkarni NM, Parker GG, Ford ED, Cushing JB, Stallman C (1996). The international canopy network: A pathway for interdisciplinary exchange of scientific information on forest canopies.Northwest Science, 70, 104-108.
78 Nadkarni NM, Parker GG, Lowman MD (2011). Forest canopy studies as an emerging field of science.Annals of Forest Science, 68, 217-224.
79 Negret BS, Perez F, Markesteijn L, Castillo MJ, Armesto JJ (2013). Diverging drought-tolerance strategies explain tree species distribution along a fog-dependent moisture gra- dient in a temperate rain forest.Oecologia, 173, 625-635.
80 Nieder J, Engwald S, Klawun M, Barthlott W (2000). Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland amazonian rain forest (Surumoni crane plot) of southern Venezuela.Biotropica, 32, 385-396.
81 Ozanne C, Anhuf D, Boulter S, Keller M, Kitching RL, K?rner C, Dias PS (2003). Biodiversity meets the atmosphere: A global view of forest canopies.Science, 301, 183-186.
82 Parker GG, Smith AP, Hogan KP (1992). Access to the upper forest canopy with a large tower crane.BioScience, 42, 664-670.
83 Pennisi E (2005). Forest research. Sky-high experiments.Science, 309, 1314-1315.
84 Petter G, Wagner K, Wanek W, Delgado EJS, Zotz G, Cabral JS, Kreft H (2015). Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals.Functional Ecology, 1-12.
85 Pounds JA, Fogden MPL, Campbell JH (1999). Biological response to climate change on a tropical mountain.Nature, 398, 611-615.
86 Rajapakse SI, Thammapala P, Tillekeratne D, Yap S (2004). Host specificity of Asplenium. In: Harrison RD ed. Proceedings of the International Field Biology Course 2004. Lambir Hills National Park, Sarawak, Malaysia.
87 Ruano-Fajardo G, Rovito SM, Ladle RJ (2014). Bromeliad selection by two salamander species in a harsh environment.PLoS ONE, 9(6), e98474. doi: 10.1371/journal.pone. 0098474.
88 Scheffers BR, Phillips BL, Shoo LP (2014). Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs.Global Ecology & Conservation, 2, 37-46.
89 Schmit V (2007). Ant-garden epiphytes are protected against drought in a venezuelan lowland rain forest.Ecotropica, 13(2), 93-100.
90 Schmit-Neuerburg VM (2002). Dynamics of Vascular Epiphyte Vegetation in the Venezuelan Lowland Rain Forest of the Surumoni Crane Project. Rheinische Friedrich-Wilhelms- Universit?t zu Bonn, Bonn, Germany.
91 Silvera K, Santiago LS, Cushman JC, Winter K (2009). Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae.Plant Physiology, 149, 1838-1847.
92 Song L, Liu WY (2013). Anthropogenic influence on forest canopies—Review of the 6th International Canopy Conference.Acta Ecologica Sinica, 33, 2632-2635. (in Chinese)[宋亮, 刘文耀 (2013). 人类活动对森林林冠的影响——第六届国际林冠学大会述评. 生态学报, 33, 2632-2635.]
93 Song L, Liu WY (2013). Potential impacts of global changes on epiphytic bryophytes in subtropical montane moist evergreen broad-leaved forests, SW China. In: Lowman MD, Devy S, Ganesh T eds. Treetops at Risk: Challenges of Global Canopy Ecology and Conservation. Springer Science & Business Media, New York.
94 Song L, Liu WY, Ma WZ, Qi JH (2012a). Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.Oecologia, 170, 847-856.
95 Song L, Liu WY, Ma WZ, Tan ZH (2011). Bole epiphytic bryophytes on Lithocarpus xylocarpus (Kurz) Markgr. in the Ailao Mountains, SW China.Ecological Research, 26, 351-363.
96 Song L, Liu WY, Nadkarni NM (2012b). Response of non-vascular epiphytes to simulated climate change in a montane moist evergreen broad-leaved forest in southwest China.Biological Conservation, 152, 127-135.
97 Song L, Ma WZ, Yao YL, Liu WY, Li S, Chen K, Nakamura A (2015a). Bole bryophyte diversity and distribution patterns along three altitudinal gradients in Yunnan, China.Journal of Vegetation Science, 26, 576-587.
98 Song L, Zhang YJ, Chen X, Li S, Lu HZ, Wu CS, Shi XM (2015b). Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.Journal of Plant Research, 128, 573-584.
99 Still CJ, Foster PN, Schneider SH (1999). Simulating the effects of climate change on tropical montane cloud forests.Nature, 398, 608-610.
100 Stork NE (2001). The management implications of canopy research.Plant Ecology, 153, 313-317.
101 Stork NE (2007a). Australian tropical forest canopy crane: New tools for new frontiers.Austral Ecology, 32, 4-9.
102 Stork NE (2007b). Dynamics and processes in the canopy of an Australian tropical rainforest.Austral Ecology, 32, 2-3.
103 Stork NE, Wright SJ, Mulkey SS (1997). Craning for a better view: The canopy crane network.Trends in Ecology and Evolution, 12, 418-420.
104 Szarzynski J, Anhuf D (2001). Micrometeorological conditions and canopy energy exchanges of a neotropical rain forest (Surumoni-Crane Project, Venezuela).Plant Ecology, 153, 231-239.
105 Testo W, Sundue M (2014). Primary hemiepiphytism in Colysis ampla (Polypodiaceae) provides new insight into the evolution of growth habit in ferns.International Journal of Plant Sciences, 175, 526-536.
106 Wagner K, Mendieta-Leiva G, Zotz G (2015). Host specificity in vascular epiphytes: A review of methodology, empirical evidence and potential mechanisms. AoB Plants, 7, plu092.
107 Woods C (2013). Factors Influencing the Distribution and Structure of Tropical Vascular Epiphyte Communities at Multiple Scales. Clemson University, Clemson, USA.
108 Woods CL, Cardelus CL, DeWalt SJ (2015). Microhabitat associations of vascular epiphytes in a wet tropical forest canopy.Journal of Ecology, 103, 421-430.
109 Xu HQ, Liu WY (2005). Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan.Biodiversity Science, 13, 137-147. (in Chinese with English abstract)[徐海清,刘文耀 (2005). 云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布. 生物多样性, 13, 137-147.]
110 Yang J, Chen WH, Shui YM, Sheng JS (2008). Investigating methods of epiphytes in forest canopy.Journal of Wuhan Botanical Research, 26, 661-667. (in Chinese with English abstract)[杨洁, 陈文红, 税玉民, 盛家舒 (2008). 林冠附生植物观测方法概述. 武汉植物研究, 26, 661-667.]
111 Zhang SB, Dai Y, Hao GY, Li JW, Fu XW, Zhang JL (2015). Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species.Frontiers in Plant Science, 6, 260.
112 Zhao MX, Geekiyanage N, Xu JC, Khin MM, Nurdiana DR, Paudel E, Harrison RD (2015). Structure of the epiphyte community in a tropical montane forest in SW China.PLoS ONE, 10(4), e0122210. doi: 10.1371/journal.pone. 0122210.
113 Zhu H (2000). Ecology and Biogeography of the Tropical Dipterocarp Rain Forest in Xishuangbanna. Yunnan Science and Technology Press, Kunming. (in Chinese)[朱华 (2000). 西双版纳龙脑香热带雨林生态学与生物地理学研究. 云南科技出版社, 昆明.]
114 Zhu H, Wang H, Zhou SS (2010). Species diversity, floristic composition and physiognomy changes in a rainforest remnant in southern Yunnan, China after 48 years.Journal of Tropical Forest Science, 22, 49-66.
115 Zotz G (2004). How prevalent is crassulacean acid metabolism among vascular epiphytes?Oecologia, 138, 184-192.
116 Zotz G (2007a). Johansson revisited: The spatial structure of epiphyte assemblages.Journal of Vegetation Science, 18, 123-130.
117 Zotz G (2007b). The population structure of the vascular epi- phytes in a lowland forest in Panama correlates with spe- cies abundance.Journal of Tropical Ecology, 23, 337-342.
118 Zotz G (2013). ‘Hemiepiphyte’: A confusing term and its history.Annal of Botany, 111, 1015-1020.
119 Zotz G, Bader M (2009). Epiphytic plants in a changing world-global: Change effects on vascular and non-vascular epiphytes. In: Lüttge U, Beyschlag W, Büdel B, Francis D eds. Progress in Botany. Springer, Berlin.
120 Zotz G, Buche M (2000). The epiphytic filmy ferns of a tropical lowland forest-species occurrence and habitat preferences.Ecotropica, 6, 203-206.
121 Zotz G, Hietz P (2001). The physiological ecology of vascular epiphytes: Current knowledge, open questions.Journal of Experimental Botany, 52, 2067-2078.
122 Zotz G, Schultz S (2008). The vascular epiphytes of a lowland forest in Panama—Species composition and spatial structure.Plant Ecology, 195, 131-141.
123 Zotz G, Vollrath B (2003). The epiphyte vegetation of the palm Socratea exorrhiza—Correlations with tree size, tree age and bryophyte cover.Journal of Tropical Ecology, 19, 81-90.
124 Zotz G, Winkler U (2013). Aerial roots of epiphytic orchids: The velamen radicum and its role in water and nutrient uptake.Oecologia, 171, 733-741.
Outlines

/

[an error occurred while processing this directive]