[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Chinese Journal of Plant Ecology >
Dynamics of soil soluble nitrogen and plant productivity in artificial pastures on the Qingzang Plateau
Received date: 2020-08-12
Accepted date: 2020-11-22
Online published: 2021-04-14
Supported by
the National Natural Science Foundation of China(41761107);the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK0302)
Aims Nitrogen is the most limiting factor to artificial pastures. It is distributed unevenly in time and space, and has different forms, which are correlated with cultivation approaches and above-ground net primary productivity (ANPP). This study investigated the dynamics of soil nitrogen and productivity in artificial pastures of Bromus inermis, Elymus sibiricus, E. nutans, Festuca ryloviana, F. sinensis, Poa pratensis var. anceps ‘Qinghai’, P. crymophila and Puccinellia tenuiflora in pure species cultivations in the Tongde farm of Qinghai Province. The dynamics of soil soluble nitrogen pools in each artificial pasture type and their relationships with ANPP were examined.
Methods The pastures were planted in 2013 without fertilizer application, and mowed to the level with 5 cm stubble in mid-September every year. The soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), soluble organic nitrogen (SON) and soluble total nitrogen (STN) content were measured during growing seasons. ANPP was determined in September each year.
Important findings (1) The average ANPP across the eight pasture types ranged between 329.67-794.67 g·m -2, with the ANPP of 794.67 g·m -2 for the E. nutans significantly higher than other pasture types. (2) From the second to fourth year following planting, the content of soil NO3 --N, SON and STN significantly decreased, but that of the NH4+-N significantly increased. (3) SON accounted for the highest proportion of STN, varying between 45.11%-88.76% in the 0-10 cm soil layer and 47.75%-88.18% in the 10-20 cm soil layer, followed by NO3--N in ranges of 5.81%-34.85% (0-10 cm) and 6.08%-40.42% (10-20 cm), respectively; NH4+-N had the least proportion at 3.41%-22.18% (0-10 cm) and 3.09%-19.56% (10-20 cm), respectively. (4) The non-metric multidimensional scale analysis (NMDS) shows that the temporal effect on soil soluble nitrogen content by different pasture types diverged for the 0-10 cm soil layer, but converged for the 10-20 cm soil layer, and that the effect of pasture types on soil soluble nitrogen content was related to soil depth. (5) Soil SON and STN contents were positively correlated with ANPP, and negatively with inorganic nitrogen (IN) content. In summary, nitrogen fertilizer application is one of the key factors for maintaining the productivity of artificial pasture from three to four years. The above results provide a scientific basis for a more in-depth understanding of the dynamics of soil soluble nitrogen and the maintenance of productivity and stability of artificial pastures on the Qingzang Plateau.
LIU Pan, WANG Wen-Ying, ZHOU Hua-Kun, MAO Xu-Feng, LIU Yan-Fang . Dynamics of soil soluble nitrogen and plant productivity in artificial pastures on the Qingzang Plateau[J]. Chinese Journal of Plant Ecology, 2021 , 45(5) : 562 -572 . DOI: 10.17521/cjpe.2020.0279
[1] | Cai YR,Fu H,Lu LF,Wang J(2014).Research progress on the uptake of organic nitrogen by terrestrial plants.Pratacultural Science,31, 1357-1366. |
[1] | [蔡瑜如,傅华,陆丽芳,王静(2014).陆地生态系统植物吸收有机氮的研究进展.草业科学,31, 1357-1366.] |
[2] | Cui XY(2007).Organic nitrogen use by plants and its significance in some natural ecosystems.Acta Ecologica Sinica,27, 3500-3512. |
[2] | [崔晓阳(2007).植物对有机氮源的利用及其在自然生态系统中的意义.生态学报,27, 3500-3512.] |
[3] | Ding W,Wang YB,Xiang GH,Chi YG,Lu SB,Zheng SX(2020).Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe.Chinese Journal of Plant Ecology,44, 33-43. |
[3] | [丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞(2020).小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响.植物生态学报,44, 33-43.] |
[4] | Fang YT,Liu DW,Zhu FF,Tu Y,Li SL,Huang SN,Quan Z,Wang A(2020).Applications of nitrogen stable isotope techniques in the study of nitrogen cycling in terrestrial ecosystems.Chinese Journal of Plant Ecology,44, 373-383. |
[4] | [方运霆,刘冬伟,朱飞飞,图影,李善龙,黄韶楠,全智,王盎(2020).氮稳定同位素技术在陆地生态系统氮循环研究中的应用.植物生态学报,44, 373-383.] |
[5] | Huang JY,Yu HL,Liu JL,Ma F,Han L(2018).Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China.Acta Ecologica Sinica,38, 5362-5373. |
[5] | [黄菊莹,余海龙,刘吉利,马飞,韩磊(2018).控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响.生态学报,38, 5362-5373.] |
[6] | Jones DL,Healey JR,Willett VB,Farrar JF,Hodge A(2005).Dissolved organic nitrogen uptake by plants—An important N uptake pathway?Soil Biology & Biochemistry,37, 413-423. |
[7] | Lambers H,Raven JA,Shaver GR,Smith SE(2008).Plant nutrient-acquisition strategies change with soil age.Trends in Ecology & Evolution,23, 95-103. |
[8] | Li JP,Ma HB,Xie YZ,Wang KB,Qiu KY(2019).Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China.Scientific Reports,9, 16088. DOI:10.1038/s41598-019-52631-6. |
[9] | Li YJ,Wang YY,Cao GM,Long RJ,Yao T(2017).Effect of land use patterns on soil nitrogen characteristics in Three-river Headwater Area.Agricultural Research in the Arid Areas,35, 272-277. |
[9] | [李亚娟,王亚亚,曹广民,龙瑞军,姚拓(2017).三江源区土地利用方式对土壤氮素特征的影响.干旱地区农业研究,35, 272-277.] |
[10] | Lin L,Zhu B,Chen C,Zhang Z,Wang QB,He JS(2016).Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau.Scientific Reports,6, 31438. DOI:10.1038/srep31438. |
[11] | Lipson D,Näsholm T(2001).The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems.Oecologia,128, 305-316. |
[12] | Lu M(2009).The Effects of Nitrogen Additions on Ecosystem Carbon and Nitrogen Cycles: a Meta-analysis. PhD dissertation,Fudan University, Shanghai. 2-3. |
[12] | [卢蒙(2009).氮输入对生态系统碳、氮循环的影响: 整合分析. 博士学位论文,复旦大学, 上海. 2-3.] |
[13] | Luo QP,Gong JR,Xu S,Baoyin T,Wang YH,Zhai ZW,Pan Y,Liu M,Yang LL(2016).Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China.Chinese Journal of Plant Ecology,40, 480-492. |
[13] | [罗亲普,龚吉蕊,徐沙,宝音陶格涛,王忆慧,翟占伟,潘琰,刘敏,杨丽丽(2016).氮磷添加对内蒙古温带典型草原净氮矿化的影响.植物生态学报,40, 480-492.] |
[14] | Ma YS,Zhou HK,Shao XQ,Zhao ZZ,Zhao L,Dong SK,Wang XL(2016).Recovery techniques and demonstration of degraded alpine ecosystems in the source region of three rivers.Acta Ecologica Sinica,36, 7078-7082. |
[14] | [马玉寿,周华坤,邵新庆,赵之重,赵亮,董世魁,王晓丽(2016).三江源区退化高寒生态系统恢复技术与示范.生态学报,36, 7078-7082.] |
[15] | Ma ZL,Zhao WQ,Zhao CZ,Liu M,Zhu P,Liu Q(2018).Responses of soil inorganic nitrogen to increased temperature and plant removal during the growing season in a Sibiraea angustata scrub ecosystem of eastern Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,42, 86-94. |
[15] | [马志良,赵文强,赵春章,刘美,朱攀,刘庆(2018).青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应.植物生态学报,42, 86-94.] |
[16] | McKane RB,Johnson LC,Shaver GR,Nadelhoffer KJ,Rastetter EB,Fry B,Giblin AE,Kielland K,Kwiatkowski BL,Laundre JA,Murray G(2002).Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra.Nature,415, 68-71. |
[17] | Miller AE,Bowman WD,Suding KN(2007).Plant uptake of inorganic and organic nitrogen: neighbor identity matters.Ecology,88, 1832-1840. |
[18] | Murphy DV,MacDonald AJ,Stockdale EA,Goulding KWT,Fortune S,Gaunt JL,Poulton PR,Wakefield JA,Webster CP,Wilmer WS(2000).Soluble organic nitrogen in agricultural soils.Biology and Fertility of Soils,30, 374-387. |
[19] | Pang Z,Jiang LL,Wang SP,Xu XL,Rui YC,Zhang ZH,Luo CY,Wang YF(2019).Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands.Journal of Soil and Sediments,19, 2212-2221. |
[20] | Qiao LQ(2014).Efect of Water and Nitrogen Additions on Ecosystem Carbon Exchanges in a Grazing Ecosystem of Inner Mongolia Steppe. Master degree dissertation,Inner Mongolia University, Hohhot. 10-16. |
[20] | [乔丽青(2014).水氮添加对内蒙古典型草原放牧生态系统碳交换的影响. 硕士学位论文,内蒙古大学, 呼和浩特. 10-16.] |
[21] | Renzeng-Wangmu ,Jiang LL,Jia SG(2018).Analysis of the influence of nitrogen and phosphorus addition on the ecological function of barley artificial grassland production.Plateau Science Research,2, 7-13. |
[21] | [仁增旺姆,姜丽丽,贾书刚(2018).氮磷添加对青稞人工草地生产生态功能的影响分析.高原科学研究,2, 7-13.] |
[22] | Shang ZH,Dong QM,Shi JJ,Zhou HK,Dong SK,Shao XQ,Li SX,Wang YL,Ma YS,Ding LM,Cao GM,Long RJ(2018).Research progress in recent ten years of ecological restoration for “black soil land” degraded grassland on Tibetan Plateau—Concurrently discuss of ecological restoration in Sanjiangyuan Region.Acta Agrestia Sinica,26, 1-21. |
[22] | [尚占环,董全民,施建军,周华坤,董世魁,邵新庆,李世雄,王彦龙,马玉寿,丁路明,曹广民,龙瑞军(2018).青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题.草地学报,26, 1-21.] |
[23] | Smolander A,Kitunen V(2002).Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species.Soil Biology & Biochemistry,34, 651-660. |
[24] | Somers C,Girkin NT,Rippey B,Lanigan GJ,Richards KG(2019).The effects of urine nitrogen application rate on nitrogen transformations in grassland soils.The Journal of Agricultural Science,157, 515-522. |
[25] | Stanley Harpole W,Tilman D(2007).Grassland species loss resulting from reduced niche dimension.Nature,446, 791-793. |
[26] | Wang QL,Wang CT,Liu W,Cao GM,Long RJ(2010).Changes in plant communities and soil enzyme activities of artificial grasslands in headwater areas of the Yangtze and Yellow Rivers.Chinese Journal of Applied & Environmental Biology,16, 662-666. |
[26] | [王启兰,王长庭,刘伟,曹广民,龙瑞军(2010).江河源区人工草地植物群落和土壤酶活性变化.应用与环境生物学报,16, 662-666.] |
[27] | Wang WY,Li WQ,Zhou HK,Kang Q,Ma XL,Liu P,Wang Z(2016).Dynamics of soil dissolved organic nitrogen and inorganic nitrogen pool in alpine artificial grasslands.Ecology and Environmental Sciences,25, 30-35. |
[27] | [王文颖,李文全,周华坤,康清,马晓玲,刘攀,王榛(2016).高寒人工草地土壤可溶性有机氮库和无机氮库动态变化.生态环境学报,25, 30-35.] |
[28] | Wang WY,Ma YG,Xu J,Wang HC,Zhu JF,Zhou HK(2012).The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau.Science China Earth Sciences,55, 1688-1695. |
[29] | Wang XY,Yao HY,Li X(2020).Research progress in soil ecosystem responses to nitrogen deposition in grasslands.Journal of Wuhan Institute of Technology,42, 276-281. |
[29] | [王肖已,姚槐应,李杏(2020).草地土壤生态系统对氮沉降响应的研究进展.武汉工程大学学报,42, 276-281.] |
[30] | Xiao YD(2012).Alkaline potassium persulfate digestion UV spectrophotometric method for determination of total nitrogen in water by the method.Guangdong Chemical Industry,39(4), 165-166. |
[30] | [萧玉端(2012).碱性过硫酸钾消解紫外分光光度法测定水中总氮的方法探讨.广东化工,39(4), 165-166.] |
[31] | Xie KY,Wang YX,Wan JC,Zhang SZ,Sui XQ,Zhao Y,Zhang B(2020).Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: a review.Acta Prataculturae Sinica,29, 157-170. |
[31] | [谢开云,王玉祥,万江春,张树振,隋晓青,赵云,张博(2020).混播草地中豆科/禾本科牧草氮转移机理及其影响因素.草业学报,29, 157-170.] |
[32] | Zhang WH,Hou LY,Yang J,Song SH,Mao XT,Zhang QQ,Bai WM,Pan QM,Zhou QP(2018).Establishment and management of alfalfa pasture in cold regions of China.Chinese Science Bulletin,63, 1651-1663. |
[32] | [张文浩,侯龙鱼,杨杰,宋世环,毛小涛,张强强,白文明,潘庆民,周青平(2018).高寒地区苜蓿人工草地建植技术.科学通报,63, 1651-1663.] |
[33] | Zhang YL,Chen WF,Yu N,Fu SF,Zhang YL,Zou HT(2013).Long-term effects of different land use patterns on mineralizing characteristic of soil organic nitrogen.Chinese Journal of Soil Science,44, 52-56. |
[33] | [张玉玲,陈温福,虞娜,付时丰,张玉龙,邹洪涛(2013).不同利用方式下土壤有机氮素矿化特征的研究.土壤通报,44, 52-56.] |
[34] | Zhang ZH,Zhou HK,Zhao XQ,Yao BQ,Ma Z,Dong QM,Zhang ZH,Wang WY,Yang YW(2018).Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau.Biodiversity Science,26, 111-129. |
[34] | [张中华,周华坤,赵新全,姚步青,马真,董全民,张振华,王文颖,杨元武(2018).青藏高原高寒草地生物多样性与生态系统功能的关系.生物多样性,26, 111-129.] |
[35] | Zhao MX,Bai EL,Liu H,Cao YY,Wang WQ,Xing YY(2019).Seasonal variation of soil soluble nitrogen fractions in plantation in Loess Hilly region.Journal of Soil and Water Conservation,33, 258-263. |
[35] | [赵满兴,白二磊,刘慧,曹阳阳,王文强,邢英英(2019).黄土丘陵区人工林土壤可溶性氮组分季节变化.水土保持学报,33, 258-263.] |
[36] | Zhou HK,Zhao XQ,Zhou L,Liu W,Li YN,Tang YH(2005).A study on correlations between vegetation degradation and soil degradation in the “Alpine Meadow” of the Qinghai- Tibetan Plateau.Acta Prataculturae Sinica,14(3), 31-40. |
[36] | [周华坤,赵新全,周立,刘伟,李英年,唐艳鸿(2005).青藏高原高寒草甸的植被退化与土壤退化特征研究.草业学报,14(3), 31-40.] |
[37] | Zhou QR,Tian LH,Zhou QP,Wang JT,Chen YJ,Chen SY(2019).Analysis on the relationship between grassland area and forage-livestock balance in Qinghai-Tibet Plateau.Chinese Journal of Grassland,41, 110-117. |
[37] | [周岐燃,田莉华,周青平,王加亭,陈有军,陈仕勇(2019).青藏高原牧户经营草地面积与其草畜平衡关系分析.中国草地学报,41, 110-117.] |
/
〈 |
|
〉 |