[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Research Articles

Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands

Expand
  • 1College of Resources and Environment, Southwest University, Chongqing 400715, China
    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3College of Resources and Environmental Science/Hebei Province Key Laboratory for Farmland Eco-Environment, Agricultural University of Hebei, Baoding, Hebei 071000, China
    4University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-09-22

  Accepted date: 2022-01-08

  Online published: 2022-02-16

Abstract

Aims Grassland is an important component of the terrestrial ecosystems in China, and plays a vital role in ecosystem productivity and functioning. During the past decades, 90% of natural grasslands have been degraded as a result of climate change and anthropogenic activities. Grassland degradation altered soil nutrient balance, exerting substantial impacts on ecosystem structure and functions. Our objective was to explore the responses of soil and microbial carbon (C), nitrogen (N) and phosphorus (P) stoichiometry to grassland degradation across the Qingzang Plateau alpine grasslands.

Methods We collected soil samples (0-10 cm) along the degradation sequence (i.e., non-degradation, moderate degradation and heavy degradation) from five sites across the “Three-River Source” region. By determination of soil and microbial C, N and P, we examined the changes in their contents and stoichiometric ratios with grassland degradation. We further synthesized data from the whole Qingzang Plateau alpine grasslands to validate the measured results using a meta-analytical approach.

Important findings Grassland degradation significantly reduced soil organic C, total N and total P contents and their stoichiometric ratios. Although microbial C and N content declined with degradation, change in microbial P content was limited along the degradation gradient. The microbial C:N:P ratios showed minimal responses to degradation. No obvious relationships were observed among soil and microbial C:N:P ratios. The above results indicate that soil microbes have the ability to maintain a given elemental composition despite variation in soil elemental composition following grassland degradation. From a long-term perspective, the nutrient-balance based soil quality promotion technology is able to effectively enhance grassland restoration and improve ecosystem service.

Cite this article

WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun . Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands[J]. Chinese Journal of Plant Ecology, 2022 , 46(4) : 461 -472 . DOI: 10.17521/cjpe.2021.0339

[an error occurred while processing this directive]

References

[1] Adams DC, Gurevitch J, Rosenberg MS (1997). Resampling tests for meta-analysis of ecological data. Ecology, 78, 1277-1283.
[2] Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944.
[3] Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing.
[3] [ 鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.]
[4] Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, Hou X, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735.
[5] Bardgett RD, van der Putten W (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
[6] Cathcart JB (1980). World phosphate reserves and resources// Khasawneh FE, Sample EC, Kamprath EJ. The Role of Phosphorus in Agriculture. Madison, Wesconsin, USA.
[7] Chen GC (2007). Ecological Protection and Construction of Sanjiangyuan Natural Protection Area. Qinghai Peopleʼs Publishing House, Xining.
[7] [ 陈桂琛 (2007). 三江源自然保护区生态保护与建设. 青海人民出版社, 西宁.]
[8] Chen J, Luo YQ, van Groenigen KJ, Hungate BA, Cao JJ, Zhou XH, Wang RW (2018). A keystone microbial enzyme for nitrogen control of soil carbon storage. Science Advances, 4, eaaq1689. DOI: 10.1126/sciadv.aaq1689.
[9] Fraser LH, Henry HAL, Carlyle CN, White SR, Beierkuhnlein C, Cahill Jr JF, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, et al. (2013). Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 11(3), 147-155.
[10] Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T (2011). Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems, 14, 261-273.
[11] Han J (2011). Survey on Ecological Issues of China’s Grasslands. Shanghai Far East Publishers, Shanghai.
[11] [ 韩俊 (2011). 中国草原生态问题调查. 上海远东出版社, 上海.]
[12] Hao AH, Xue X, Peng F, You QG, Liao J, Duan HC, Huang CH, Dong SY (2020). Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai- Tibetan Plateau. Acta Ecologica Sinica, 40, 964-975.
[12] [ 郝爱华, 薛娴, 彭飞, 尤全刚, 廖杰, 段翰晨, 黄翠华, 董斯扬 (2020). 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 40, 964-975.]
[13] Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156.
[14] Hu L, Wang CT, Wang GX, Ma L, Liu W, Xiang ZY (2014). Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 23, 8-19.
[14] [ 胡雷, 王长庭, 王根绪, 马力, 刘伟, 向泽宇 (2014). 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 23, 8-19.]
[15] Lai CM, Xue X, Lai RW, Li CY, You QG, Zhang WJ, Liu FY, Peng F (2019). Alpine meadows at different levels of degradation in the Beiluhe Basin of Tibetan Plateau Characteristics of soil respiration. Pratacultural Science, 36, 952- 959.
[15] [ 赖炽敏, 薛娴, 赖日文, 李成阳, 尤全刚, 张文娟, 刘斐耀, 彭飞 (2019). 青藏高原北麓河流域不同退化程度高寒草甸土壤呼吸特征. 草业科学, 36, 952-959.]
[16] Li HY, Yao T, Zhang JG, Gao YM, Ma YC, Lu XW, Zhang HR, Yang XL (2018a). Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 29, 3793-3801.
[16] [ 李海云, 姚拓, 张建贵, 高亚敏, 马亚春, 路晓雯, 张慧荣, 杨晓蕾 (2018a). 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 29, 3793- 3801.]
[17] Li HY, Zhang JG, Yao T, Yang XM, Gao YM, Li CN, Li Q, Feng Y (2018b). Soil nutrients, enzyme activities and ecological stoichiometric characteristics in degraded alpine grasslands. Journal of Soil and Water Conservation, 32, 287-295.
[17] [ 李海云, 张建贵, 姚拓, 杨晓玫, 高亚敏, 李昌宁, 李琦, 冯影 (2018b). 退化高寒草地土壤养分、酶活性及生态化学计量特征. 水土保持学报, 32, 287-295.]
[18] Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XE, Zhou Y (2016). Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222.
[19] Lin L, Wu YN, Kenji T, Huo GW, Luo WT, Lv JZ (2013). Variation of soil physicochemical and microbial properties in degraded steppes in Hulunbeir of China. Chinese Journal of Applied Ecology, 24, 3407-3414.
[19] [ 林璐, 乌云娜, 田村宪司, 霍光伟, 雒文涛, 吕建洲 (2013). 呼伦贝尔典型退化草原土壤理化与微生物性状. 应用生态学报, 24, 3407-3414.]
[20] Liu SB, Zamanian K, Schleuss PM, Zarebanadkouki M, Kuzyakov Y (2018). Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles. Agriculture, Ecosystems & Environment, 252, 93-104.
[21] Luo YY, Zhang Y, Zhang JH, Ka ZJ, Shang LY, Wang SY (2012). Soil stoichiometry characteristics of alpine meadow at its different degradation stages. Chinese Journal of Ecology, 31, 254-260.
[21] [ 罗亚勇, 张宇, 张静辉, 卡召加, 尚伦宇, 王少影 (2012). 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 31, 254-260.]
[22] Ma Y, Zhang DG, Zhou H, Zhou HC, Chen JG (2019). Effects of alpine meadow degradation on microbial biomass and enzyme activities in rhizosphere soil of dominant species. Grassland and Turf, 39(4), 44-52.
[22] [ 马源, 张德罡, 周恒, 周会程, 陈建纲 (2019). 高寒草甸退化对优势物种根际土壤微生物量及酶活性的影响. 草原与草坪, 39(4), 44-52.]
[23] Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2002). Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 19(9), 1-5.
[23] [ 马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2002). 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 19(9), 1-5.]
[24] Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsh A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014). Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 5, 3694. DOI: 10.1038/ncomms 4694.
[25] Peng YF, Guo DL, Yang YH (2017). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114.
[26] Peng YF, Wang GQ, Li F, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Zhou GY, Fang HJ, Liu XJ, Liu CY, Yang YH (2019). Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53, 4150-4160.
[27] Shang ZH, Ding LL, Long RJ, Ma YS (2007). Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai- Tibetan Plateau. Acta Prataculturae Sinica, 16, 34-40.
[27] [ 尚占环, 丁玲玲, 龙瑞军, 马玉寿 (2007). 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 16, 34-40.]
[28] Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154.
[28] [ 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.]
[29] Sun FD, Qing Y, Zhu C, Lu H, Hu YX, Li Y, Chen WY (2016). Analysis of soil enzyme activities and microbial community characteristics in degraded alpine grassland, Zoige, southwest China. Journal of Arid Land Resources and Environment, 30(7), 119-125.
[29] [ 孙飞达, 青烨, 朱灿, 路慧, 胡亚茜, 李勇, 陈文业 (2016). 若尔盖高寒退化草地土壤水解酶活性和微生物群落数量特征分析. 干旱区资源与环境, 30(7), 119-125.]
[30] The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001). 1:1 000 000 Vegetation Atlas of China. Science Press, Beijing.
[30] [中国科学院中国植被图编辑委员会 (2001). 1:1 000 000中国植被图集. 科学出版社, 北京.]
[31] Tischer A, Potthast K, Hamer U (2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
[32] Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020a). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970.
[33] Wang Y, Ren Z, Ma P, Wang Z, Elser JJ (2020b). Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 722, 137910. DOI: 10.1016/j.scitotenv. 2020.137910.
[34] Wang YQ, Yin YL, Li SX (2019). Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees. Ecology and Environmental Sciences, 28, 1108-1116.
[34] [ 王玉琴, 尹亚丽, 李世雄 (2019). 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 28, 1108-1116.]
[35] Yin YL, Wang YQ, Bao GS, Wang HS, Li SX, Song ML, Shao BL, Wen YC (2017). Characteristics of soil microbes and enzyme activities in different degraded alpine meadows. Chinese Journal of Applied Ecology, 28, 3881-3890.
[35] [ 尹亚丽, 王玉琴, 鲍根生, 王宏生, 李世雄, 宋梅玲, 邵宝莲, 温玉存 (2017). 退化高寒草甸土壤微生物及酶活性特征. 应用生态学报, 28, 3881-3890.]
[36] Yu LH, Wang J, Liao LR, Zhang C, Liu GB (2020). Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 28, 1702-1710.
[36] [ 喻岚晖, 王杰, 廖李容, 张超, 刘国彬 (2020). 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 28, 1702-1710.]
[37] Zhang ZC, Hou G, Liu M, Wei TX, Sun J (2019). Degradation induces changes in the soil C:N:P stoichiometry of alpine steppe on the Tibetan Plateau. Journal of Mountain Science, 16, 2348-2360.
[38] Zhang T, Chen HYH, Ruan H (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
[39] Zhou H, Zhang DG, Jiang ZH, Sun P, Xiao HL, Wu YX, Chen JG (2019). Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 651, 2281-2291.
[40] Zhou HK, Yao BQ, Yu L (2016). Degraded Succession and Ecological Restoration of Alpine Grassland in the Three- River Source Region. Science Press, Beijing.
[40] [ 周华坤, 姚步青, 于龙 (2016). 三江源区高寒草地退化演替与生态恢复. 科学出版社, 北京]
[41] Zhou HK, Zhao XQ, Wen J, Chen Z, Yao BQ, Yang YW, Xu WX, Duan JC (2012). The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 21, 4-14.
[41] [ 周华坤, 赵新全, 温军, 陈哲, 姚步青, 杨元武, 徐维新, 段吉闯 (2012). 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 21, 4-14.]
[42] Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
[42] [ 周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
Outlines

/

[an error occurred while processing this directive]