[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Chinese Journal of Plant Ecology >
Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China
Received date: 2022-03-18
Accepted date: 2022-06-15
Online published: 2022-09-06
Supported by
National Key R&D Program of China(2020YFA0608101);National Natural Science Foundation of China(31872703);National Natural Science Foundation of China(31570617)
Aims Under the background of climate warming, the contradiction between forest and water in semi-arid areas is becoming increasingly prominent. Understanding the changes in energy flux and evapotranspiration (ET) of the plantation ecosystems in this area can provide a reference for future selection of afforestation tree species.
Methods In this paper, the water and heat fluxes of Pinus tabuliformis and Pinus sylvestris var. mongolica plantations in semi-arid area of western Liaoning were observed continuously for one year (October 2019 to October 2020) using the eddy covariance method. The length of growing season (April 11 to October 10) was determined using the critical temperature combined with the variation characteristics of normalized differential vegetation index (NDVI). The seasonal dynamics of latent heat flux (LE), sensible heat flux (H), net radiation (Rn), soil heat flux (G) and ET were analyzed. The effects of air temperature (Ta), Rn, vapor pressure deficit (VPD), soil water content (SWC), and NDVI on ET were discussed by applying regression analysis and path analysis.
Important findings The Rn, G and H of P. tabuliformis and P. sylvestrisvar. mongolica plantations showed single-peak seasonal variation trends, and the seasonal dynamics of LE fluctuated more sharply. During the whole year, energy consumption was dominated by H, followed by LE, and G consumed less energy. The average values of Bowen ratio during the growing season were 1.82 and 2.23, respectively, smaller than annual average values (3.43 and 4.44). The ET during the growing season was 302.79 and 247.54 mm, accounting for 82.89% and 84.20% of the annual ET, respectively. The annual ET was 365.29 and 293.99 mm accounting for 87.81% and 72.23% of precipitation in the same period. Priestley-Taylor coefficient (α) and decoupling factor (Ω) were used to analyze the effects of SWC and canopy conductance (gc) on ET. The annual mean values of α was 0.30 and 0.24, respectively, and the Ω values was 0.12 and 0.07, respectively. During the whole year, SWC was the dominant factor affecting the ET of two plantations, followed by Rn. Under non-water-stressed conditions, Rn had a greater impact on ET.The combined effects of Ta and VPD on ET were small, which were mostly indirect effects. NDVI and gc were important biological factors affecting the ET of the two plantations, especially during the growing season. This study shows that P. tabuliformis and P. sylvestrisvar. mongolica plantations in the semi-arid area of western Liaoning Province adopt a conservative water consumption strategy to maintain water balance of the ecosystem, and these species are suitable afforestation tree species in this area.
WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu . Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China[J]. Chinese Journal of Plant Ecology, 2022 , 46(12) : 1508 -1522 . DOI: 10.17521/cjpe.2022.0099
[1] | Aires LM, Pio CA, Pereira JS (2008). The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agricultural and Forest Meteorology, 148, 565-579. |
[2] | Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler HJ, Gan TY, Pendergrass AG, Rosenfeld D, Swann ALS, Wilcox LJ, Zolina O (2020). Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472, 49-75. |
[3] | Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J (2020). Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 10, 1091-1095. |
[4] | Bowen IS (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27, 779. |
[5] | Chen YM, Xue YJ, Hu YM (2018). How multiple factors control evapotranspiration in North America evergreen needleleaf forests. Science of the Total Environment, 622-623, 1217-1224. |
[6] | Cui WJ, Hou W, Yang RZ, Zhao YJ (2021). Seasonal dynamics of energy distribution in urban forest ecosystem of Beijing. Journal of Beijing Forestry University, 43(1), 27-36. |
[6] | [ 崔万晶, 侯巍, 杨睿智, 赵云杰 (2021). 北京城市森林生态系统能量分配的季节动态研究. 北京林业大学学报, 43(1), 27-36.] |
[7] | Dang HZ, Zhang XL, Han H, Chen S, Li MY (2021). Water use by chinese pine is less conservative but more closely regulated than in Mongolian Scots pine in a plantation forest, on sandy soil, in a semi-arid climate. Frontiers in Plant Science, 12, 635022. DOI: 10.3389/fpls.2021.635022. |
[8] | Dang HZ, Zhang XL, Han H, Shi CC, Ge YX, Ma QL, Chen S, Liu CY (2022). Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices. Chinese Journal of Plant Ecology, 46, 971-983. |
[8] | [ 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖 (2022). 樟子松固沙林林水关系研究进展及对营林实践的指导. 植物生态学报, 46, 971-983.] |
[9] | Davies WJ, Zhang J(1991). Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Biology, 42, 55-76. |
[10] | Deng JF, Yao JQ, Zheng X, Gao GL (2021). Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China. Agricultural Water Management, 249, 106806. DOI: 10.1016/j.agwat.2021.106806. |
[11] | Fang SM, Zhao CY, Jian SQ (2016). Canopy transpiration of Pinus tabulaeformis plantation forest in the Loess Plateau region of China. Environmental Earth Sciences, 75, 376. DOI: 10.1007/s12665-016-5291-4. |
[12] | Gao X, Du ZY, Yang QS, Zhang JS, Li YT, Wang XJ, Gu FX, Hao WP, Yang ZK, Liu DX, Chu JM (2022). Energy partitioning and evapotranspiration in a black locust plantation on the Yellow River Delta, China. Journal of Forestry Research, 33, 1219-1232. |
[13] | Gao X, Zhou Y, Meng P, Pei SY, Zhang JS (2022). Net ecosystem exchange of Pinus sylvestris var. mongolica plantation in the western Liaoning Province, China. Chinese Journal of Applied Ecology, 33, 1183-1190. |
[13] | [ 高翔, 周宇, 孟平, 裴松义, 张劲松 (2022). 辽西樟子松人工林净生态系统碳交换. 应用生态学报, 33, 1183-1190.] |
[14] | Geng SW, Wu ZX, Yang C (2021). Water vapor flux exchange of rubber forest stand in Hainan Danzhou and its response to environmental factors. Journal of Northwest Forestry University, 36(1), 77-85. |
[14] | [ 耿思文, 吴志祥, 杨川 (2021). 海南儋州地区橡胶林生态系统水汽通量变化特征及其对环境因子的响应. 西北林学院学报, 36(1), 77-85.] |
[15] | Granier A, Loustau D, Bréda N (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 57, 755-765. |
[16] | Han B, Lü SH, Li RQ, Wang X, Zhao L, Zhao CL, Wang DY, Meng XH (2017). Global land surface climate analysis based on the calculation of a modified Bowen ratio. Advances in Atmospheric Sciences, 34, 663-678. |
[17] | IPCC Intergovernmental Panel on Climate Change(2021). Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[18] | Jarvis PG, McNaughton KG (1986). Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 15, 1-49. |
[19] | Ji XB, Zhao WZ, Jin BW, Liu J, Xu FN, Zhou H (2021). Seasonal variations in energy exchange and evapotranspiration of an oasis-desert ecotone in an arid region. Hydrological Processes, 35, e14364. DOI: 10.1002/hyp.14364. |
[20] | Jia X, Zha TS, Gong JN, Wu B, Zhang YQ, Qin SG, Chen GP, Feng W, Kellom?ki S, Peltola H (2016). Energy partitioning over a semi-arid shrubland in northern China. Hydrological Processes, 30, 972-985. |
[21] | Jiao L, Lu N, Fu BJ, Wang J, Li ZS, Fang WW, Liu JB, Wang C, Zhang LW (2018). Evapotranspiration partitioning and its implications for plant water use strategy: evidence from a black locust plantation in the semi-arid Loess Plateau, China. Forest Ecology and Management, 424, 428-438. |
[22] | Kuricheva OA, Avilov VK, Dinh DB, Sandlersky RB, Kuznetsov AN, Kurbatova JA (2021). Seasonality of energy and water fluxes in a tropical moist forest in Vietnam. Agricultural and Forest Meteorology, 298-299, 108268. DOI: 10.1016/j.agrformet.2020.108268. |
[23] | Li GJ (2017). Density-regulated technology of Pinus sylvestris var. mongolica plantation in hilly mountains in western Liaoning Province. Protection Forest Science and Technology, (2), 33-35. |
[23] | [ 李国军 (2017). 辽西丘陵山地樟子松人工林密度调控技术. 防护林科技, (2), 33-35.] |
[24] | Li XH, Tian WD, Li RD, Jin C, Jiang Y, Hao SR, Jia X, Tian Y, Zha TS (2021). Responses of water vapor and heat fluxes to environmental factors in a deciduous broad- leaved forest ecosystem in Beijing. Chinese Journal of Plant Ecology, 45, 1191-1202. |
[24] | [ 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山 (2021). 北京松山落叶阔叶林生态系统水热通量对环境因子的响应. 植物生态学报, 45, 1191-1202.] |
[25] | Liu CF, Zhang ZQ, Sun G, Zha TG, Zhu JZ, Shen LH, Chen J, Fang XR, Chen JQ (2009). Quantifying evapotranspiration and biophysical regulations of a poplar plantation assessed by eddy covariance and sap-flow methods. Chinese Journal of Plant Ecology, 33, 706-718. |
[25] | [ 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉 (2009). 基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应. 植物生态学报, 33, 706-718.] |
[26] | Liu YL, Jiang H, Zhou GM, Chen YF, Sun C, Yang S (2014). Water vapor flux variation characteristic and the relationship with its environment factors in Phyllostachys edulis forest in Anji. Acta Ecologica Sinica, 34, 4900-4909. |
[26] | [ 刘玉莉, 江洪, 周国模, 陈云飞, 孙成, 杨爽 (2014). 安吉毛竹林水汽通量变化特征及其与环境因子的关系. 生态学报, 34, 4900-4909.] |
[27] | Ma JY, Zha TS, Jia X, Tian Y, Bourque CPA, Liu P, Bai YJ, Wu YJ, Ren C, Yu HQ, Zhang F, Zhou CX, Chen WJ (2018). Energy and water vapor exchange over a young plantation in northern China. Agricultural and Forest Meteorology, 263, 334-345. |
[28] | Ma N, Zhang YS, Guo YH, Gao HF, Zhang HB, Wang YF (2015). Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. Journal of Hydrology, 529, 980-992. |
[29] | Ma XH, Feng Q (2020). Energy partitioning and evapotranspiration of Populus euphratica forests in desert riparian area. Acta Ecologica Sinica, 40, 8683-8693. |
[29] | [ 马小红, 冯起 (2020). 荒漠河岸胡杨林生态系统能量分配及蒸散发. 生态学报, 40, 8683-8693.] |
[30] | Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S (2008). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148, 1978-1989. |
[31] | Monteith JL, Unsworth MH (1990). Principles of Environmental Physics. 2nd ed. Chapman and Hall, New York. |
[32] | National Forestry and Grassland Administration (2019). Report on Forest Resources in China (2014-2018). China Forestry Publishing House, Beijing. |
[32] | [国家林业和草原局(2019). 中国森林资源报告(2014-2018). 中国林业出版社, 北京.] |
[33] | Nicholls EM, Carey SK (2021). Evapotranspiration and energy partitioning across a forest-shrub vegetation gradient in a subarctic, alpine catchment. Journal of Hydrology, 602, 126790. DOI: 10.1016/j.jhydrol.2021.126790. |
[34] | Pascolini-Campbell M, Reager JT, Chandanpurkar HA, Rodell M (2022). Retraction note: a 10 percent increase in global land evapotranspiration from 2003 to 2019. Nature, 604, 202. |
[35] | Priestley CHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92. |
[36] | Song LN, Zhu JJ, Zheng X, Wang K, Lü LY, Zhang XL, Hao GY (2020). Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agricultural and Forest Meteorology, 281, 107830. DOI: 10.1016/j.agrformet.2019.107830. |
[37] | Song LN, Zhu JJ, Zheng X, Wang K, Zhang JX, Hao GY, Wang GC, Liu JH (2022). Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China. Agricultural and Forest Meteorology, 314, 108784. DOI: 10.1016/j.agrformet.2021.108784. |
[38] | Tang YK, Wen XF, Sun XM, Wang HM (2014). Interannual variation of the Bowen ratio in a subtropical coniferous plantation in southeast China, 2003-2012. PLOS ONE, 9, e88267. DOI: 10.1371/journal.pone.0088267. |
[39] | Thom AS (1972). Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological Society, 98, 124-134. |
[40] | Tong XJ, Meng P, Zhang JS, Li J, Zheng N, Huang H (2012). Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmospheric Environment, 49, 257-267. |
[41] | Tong XJ, Zhang JS, Meng P, Li J, Zheng N (2017). Environmental controls of evapotranspiration in a mixed plantation in North China. International Journal of Biometeorology, 61, 227-238. |
[42] | Wang L, Liu ZB, Guo JB, Wang YH, Ma J, Yu SP, Yu PT, Xu LH (2021). Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. Forest Ecology and Management, 481, 118749. DOI: 10.1016/j.foreco.2020.118749. |
[43] | Wang YR, Wang YH, Yu PT, Xiong W, Du AP, Li ZH, Liu ZB, Ren L, Xu LH, Zuo HJ (2016). Simulated responses of evapotranspiration and runoff to changes in the leaf area index of a Larix principis-rupprechtii plantation. Acta Ecologica Sinica, 36, 6928-6938. |
[43] | [ 王亚蕊, 王彦辉, 于澎涛, 熊伟, 杜阿朋, 李振华, 刘泽彬, 任璐, 徐丽宏, 左海军 (2016). 华北落叶松人工林蒸散及产流对叶面积指数变化的响应. 生态学报, 36, 6928-6938.] |
[44] | Wever LA, Flanagan LB, Carlson PJ (2002). Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 112, 31-49. |
[45] | Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, et al. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243. |
[46] | Wu CY, Gonsamo A, Chen JM, Kurz WA, Price DT, Lafleur PM, Jassal RS, Dragoni D, Bohrer G, Gough CM, Verma SB, Suyker AE, Munger JW (2012). Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: a north America flux data synthesis. Global and Planetary Change, 92-93, 179-190. |
[47] | Wu JB, Guan DX, Zhao XS, Han SJ, Jin CJ, Yu GR (2005). Characteristic of the energy balance in broad-leaved Korean pine forest of northeastern China. Acta Ecologica Sinica, 25, 2520-2526. |
[47] | [ 吴家兵, 关德新, 赵晓松, 韩士杰, 金昌杰, 于贵瑞 (2005). 东北阔叶红松林能量平衡特征. 生态学报, 25, 2520-2526.] |
[48] | Yan TW, You WZ, Zhang HD, Wei WJ, Wang RZ, Zhao G (2015). Energy balance and evapotranspiration in a natural secondary forest in Eastern Liaoning Province, China. Acta Ecologica Sinica, 35, 172-179. |
[48] | [ 颜廷武, 尤文忠, 张慧东, 魏文俊, 王睿照, 赵刚 (2015). 辽东山区天然次生林能量平衡和蒸散. 生态学报, 35, 172-179.] |
[49] | Yue P, Zhang Q, Zhang L, Li HY, Yang Y, Zeng J, Wang S (2019). Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agricultural and Forest Meteorology, 278, 107671. DOI: 10.1016/j.agrformet.2019.107671. |
[50] | Zhang LF, Zhang JQ, Zhang X, Liu XQ, Zhao L, Li Q, Chen DD, Gu S (2017). Characteristics of evapotranspiration of degraded alpine meadow in the Three-River Source Region. Acta Agrestia Sinica, 25, 273-281. |
[50] | [ 张立锋, 张继群, 张翔, 刘晓琴, 赵亮, 李奇, 陈懂懂, 古松 (2017). 三江源区退化高寒草甸蒸散的变化特征. 草地学报, 25, 273-281.] |
[51] | Zhang XL, Zhang GD, Hu CH, Ping JH, Jian SQ (2020). Response of soil moisture to landscape restoration in the hilly and gully region of the Loess Plateau, China. Biologia, 75, 827-839. |
[52] | Zhang XY, Chu JM, Meng P, Zheng N, Yao ZW, Wang HS, Jiang SX (2016). Effects of environmental factors on evapotranspiration characteristics of Haloxylon ammodendron plantation in the Minqin oasis-desert ectone, Northwest China. Chinese Journal of Applied Ecology, 27, 2390-2400. |
[52] | [ 张晓艳, 褚建民, 孟平, 郑宁, 姚增旺, 王鹤松, 姜生秀 (2016). 环境因子对民勤绿洲荒漠过渡带梭梭人工林蒸散的影响. 应用生态学报, 27, 2390-2400.] |
/
〈 |
|
〉 |