[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Research Articles

Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest

Expand
  • Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

Received date: 2022-04-06

  Accepted date: 2022-09-05

  Online published: 2023-02-24

Supported by

National Natural Science Foundation of China(31922052);National Natural Science Foundation of China(32171641);National Natural Science Foundation of China(32022056)

Abstract

Aims In order to simulate the actual situation to the greatest extent, the decomposition dynamics of litter in subtropical natural broadleaf forests were explored using a litter “sandwichs” method.
Methods A three-year field in-situ experiment of undisturbed litter layer decomposition was carried out in a natural subtropical broadleaf forest. Eleven layers of litter with different decomposition degrees were isolated accurately by laying nylon nets (60 mesh, 1.2 m × 1.95 m) every three months, and the dynamic of labile and recalcitrant carbon (C) and nitrogen (N) contents were analyzed.
Important findings The results showed that: 1) During the whole decomposition process, the labile and recalcitrant C participated in the decomposition at different times. Water-soluble organic C began to decompose first and sustained release time up to 295 d, while the recalcitrant C began to decompose behind for many days (at 4th layer, 422 d), and the change in acid-hydrolyzed organic C fluctuated greatly due to the fates of the labile and recalcitrant C. 2) Compared with that of C, the dynamics of N in the whole decomposition stage were more complex, to some extent, with obvious periodicity, that is, N retention (1st to 3rd layers, 90-295 d), release (4th to 6th layers, 422-670 d), and retention again (7th to 11th layers, 802-1 200 d). 3) The undisturbed decomposition of litterfall layer was beneficial to the N storage. On the one hand, at the early stage of decomposition, the labile substances from the upper litterfall were accumulated in the lower layer due to the leaching, which reduced the risk of their leaching loss. On the other hand, recalcitrant C and N was prone to accumulate in the bottom layers, which was beneficial to C and N retention. It can be concluded that the natural decomposition state of forest litter layer is conducive to the return of litter recalcitrant C and N into soil. Therefore, more attention should be paid to the protection of litter layer in forest management, which could ensure litter decomposing in its natural state to improve the stabilization and enrichment of C and N.

Cite this article

LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren . Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest[J]. Chinese Journal of Plant Ecology, 2023 , 47(5) : 618 -628 . DOI: 10.17521/cjpe.2022.0187

[an error occurred while processing this directive]

References

[1] Alarcón-Gutiérrez E, Floch C, Augur C, Le Petit J, Ziarelli F, Criquet S (2009). Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile. Pedobiologia, 52, 387-399.
[2] Baietto A, Hirigoyen A, Hernández J, del Pino A (2021). Comparative dynamics of nutrient release through litter decomposition in Eucalyptus grandis Hill ex Maiden and Pinus taeda L. stands. Forests, 12, 1227. DOI: 10.3390/ f12091227.
[3] Binkley D (2002). Ten-year decomposition in a loblolly pine forest. Canadian Journal of Forest Research, 32, 2231-2235.
[4] Chen JL, Zhang SJ, Li LD, Gu X, Liu ZD, Wang LF, Fang X (2020). Stock and nutrient characteristics of litter layer at different vegetation restoration stages in subtropical region, China. Acta Ecologica Sinica, 40, 4073-4086.
[4] [陈金磊, 张仕吉, 李雷达, 辜翔, 刘兆丹, 王留芳, 方晰 (2020). 亚热带不同植被恢复阶段林地凋落物层现存量和养分特征. 生态学报, 40, 4073-4086.]
[5] Chen T, Xi M, Kong FL, Li Y, Pang LH (2016). A review on litter decomposition and influence factors. Chinese Journal of Ecology, 35, 1927-1935.
[5] [陈婷, 郗敏, 孔范龙, 李悦, 庞立华 (2016). 枯落物分解及其影响因素. 生态学杂志, 35, 1927-1935.]
[6] Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
[7] Don A, Kalbitz K (2005). Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology & Biochemistry, 37, 2171-2179.
[8] Fang YT, Liu DW, Zhu FF, Tu Y, Li SL, Huang SN, Quan Z, Wang A (2020). Applications of nitrogen stable isotope techniques in the study of nitrogen cycling in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 373-383.
[8] [方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎 (2020). 氮稳定同位素技术在陆地生态系统氮循环研究中的应用. 植物生态学报, 44, 373-383.]
[9] Gu YJ, Li YM, Tao QY, Wang L (2020). Comparison on early decomposition process of forest litter from litter bag and natural environment. Journal of Zhejiang Forestry Science and Technology, 40(6), 1-8.
[9] [谷永建, 李玉梅, 陶千冶, 旺罗 (2020). 网袋埋藏和自然环境下测定森林凋落物早期分解过程的比较. 浙江林业科技, 40(6), 1-8.]
[10] Hoppe B, Purahong W, Wubet T, Kahl T, Bauhus J, Arnstadt T, Hofrichter M, Buscot F, Krüger D (2016). Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 77, 367-379.
[11] Jorgensen JR, Wells CG, Metz LJ (1980). Nutrient changes in decomposing loblolly pine forest floor. Soil Science Society of America Journal, 44, 1307-1314.
[12] Krishna MP, Mohan M (2017). Litter decomposition in forest ecosystems: a review. Energy, Ecology & Environment, 2, 236-249.
[13] Li S, Gurmesa GA, Zhu W, Gundersen P, Zhang S, Xi D, Huang S, Wang A, Zhu F, Jiang Y, Zhu J, Fang Y (2019). Fate of atmospherically deposited NH4+ and NO3- in two temperate forests in China: temporal pattern and redistribution. Ecological Applications, 29, e01920. DOI: 10.1002/eap.1920.
[14] Li W, Liu XF, Chen GS, Zhao BJ, Qiu X, Yang YS (2016). Effects of litter manipulation on soil respiration in the natural forests and plantations of Castanopsis carlesii in mid-subtropical China. Scientia Silvae Sinicae, 52(11), 11-18.
[14] [李伟, 刘小飞, 陈光水, 赵本嘉, 邱曦, 杨玉盛 (2016). 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响. 林业科学, 52(11), 11-18.]
[15] Li YF, Guo YL, Li XK, Li DX, Wang B, Chen T, Lu F, Xiang WS, Huang FZ, Liu SY, Li JX, Wen SJ, Lu SH (2022). Analysis of the leaf litter decomposition rate and nutrient content in karst seasonal rainforest in southwest Guangxi. Acta Geoscientica Sinica, 43, 483-490.
[15] [李雨菲, 郭屹立, 李先琨, 李冬兴, 王斌, 陈婷, 陆芳, 向悟生, 黄甫昭, 刘晟源, 李健星, 文淑均, 陆树华 (2022). 桂西南喀斯特季节性雨林凋落叶分解速率和养分含量特征分析. 地球学报, 43, 483-490.]
[16] Lin KM, Zhang ZQ, Ye FM, Lin Y, Li QS (2010). Dynamic analysis of decomposition characteristics and content change of nutrient elements of leaf litter of Cunninghamia lanceolata, Phoebe bournei and Schima superba under C. lanceolata artificial forest. Journal of Plant Resources and Environment, 19(2), 34-39.
[16] [林开敏, 章志琴, 叶发茂, 林艳, 李卿叁 (2010). 杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析. 植物资源与环境学报, 19(2), 34-39.]
[17] Liu BW, Zhang L, Wu FZ, Ni XY, Xu ZF, Tan B, Yue K (2020). Dynamics of water-soluble matters during leaf litter decomposition under different habitats in an alpine forest. Chinese Journal of Ecology, 39, 1130-1140.
[17] [刘博文, 张丽, 吴福忠, 倪祥银, 徐振锋, 谭波, 岳楷 (2020). 高寒森林不同生境凋落叶分解过程中水溶性组分动态特征. 生态学杂志, 39, 1130-1140.]
[18] Liu XW, Liu J (2012). N and P dynamic of Phragmites australis and Typha angustata litter in Dawen River Wetland during the decomposition. Journal of Qingdao Agricultural University (Natural Science), 29, 289-293.
[18] [柳新伟, 刘君 (2012). 大汶河湿地香蒲和芦苇分解过程中N、P动态研究. 青岛农业大学学报(自然科学版), 29, 289-293.]
[19] Niu XY, Sun XM, Chen DS, Zhang SG (2020). Characteristics of microbial community in litter relative to stand of Larix kaempferi different in development stage. Acta Pedologica Sinica, 57, 1471-1482.
[19] [牛小云, 孙晓梅, 陈东升, 张守攻 (2020). 不同发育阶段日本落叶松人工林枯落物层微生物群落特征. 土壤学报, 57, 1471-1482.]
[20] Pan SH, Cheng YQ, Du H, Yang YN, Wang YQ, Zhang CF (2019). Litter decomposition and DOC release during forest succession in Greater Khingan Mountains. Journal of Southwest Forestry University (Natural Sciences), 39(5), 75-83.
[20] [潘思涵, 程宇琪, 杜浩, 杨宇娜, 王雨晴, 张成福 (2019). 大兴安岭森林演替过程中凋落物分解与DOC释放研究. 西南林业大学学报(自然科学版), 39(5), 75-83.]
[21] Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
[22] Pastorelli R, Paletto A, Agnelli AE, Lagomarsino A, De Meo I (2020). Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula, Russian Federation). Forest Ecology and Management, 455, 117643. DOI: 10.1016/j.foreco.2019.117643.
[23] Purahong W, Wubet T, Krüger D, Buscot F (2018). Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. The ISME Journal, 12, 289-295.
[24] Qin QQ, Wang HY, Zheng YL, Lei XD (2021). Spatial distribution characteristics of litter nutrients in temperate spruce- fir mixed forests. Journal of Beijing Forestry University, 43(3), 73-84.
[24] [秦倩倩, 王海燕, 郑永林, 雷相东 (2021). 温带云冷杉混交林凋落物养分的空间分布特征. 北京林业大学学报, 43(3), 73-84.]
[25] Qin SJ, Liu JS, Zhou WM, Cheng L (2008). Dynamics of initial decomposition of Calamagrostis angustifolia litter in Sanjiang Plain of China. Chinese Journal of Applied Ecology, 19, 1217-1222.
[25] [秦胜金, 刘景双, 周旺明, 程莉 (2008). 三江平原小叶章湿地枯落物初期分解动态. 应用生态学报, 19, 1217-1222.]
[26] Qualls RG (2016). Long-term (13 years) decomposition rates of forest floor organic matter on paired coniferous and deciduous watersheds with contrasting temperature regimes. Forests, 7, 231. DOI: 10.3390/f7100231.
[27] Qualls RG, Takiyama A, Wershaw RL (2003). Formation and loss of humic substances during decomposition in a pine forest floor. Soil Science Society of America Journal, 67, 899-909.
[28] Wang JK, Xu YD, Ding F, Gao XD, Li SY, Sun LJ, An TT, Pei JB, Li M, Wang Y, Zhang WJ, Ge Z (2019). Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 56, 528-540.
[28] [汪景宽, 徐英德, 丁凡, 高晓丹, 李双异, 孙良杰, 安婷婷, 裴久渤, 李明, 王阳, 张维俊, 葛壮 (2019). 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 56, 528-540.]
[29] Wang LF, Chen YM, Zhou Y, Zheng HF, Xu ZF, Tan B, You CM, Zhang L, Li H, Guo L, Wang LX, Huang YY, Zhang J, Liu Y (2021). Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone. Science of the Total Environment, 753, 142287. DOI: 10.1016/j.scitotenv.2020.142287.
[30] Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of forest gap on soluble nitrogen and soluble phosphorus of foliar litter decomposition in an alpine forest. Journal of Soil and Water Conservation, 28, 214-221.
[30] [徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 高山森林林窗对凋落物分解过程中水溶性氮和磷的影响. 水土保持学报, 28, 214-221.]
[31] Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
[31] [曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
[32] Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams. Chinese Journal of Applied Ecology, 26, 1601-1608.
[32] [张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.]
[33] Zhang JH, Tang ZY, Shen HH, Fang JY (2017). Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 41, 71-80.
[33] [张建华, 唐志尧, 沈海花, 方精云 (2017). 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报, 41, 71-80.]
[34] Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY (2008). Litter fall production in relation to environmental factors in northeast China’s forests. Chinese Journal of Plant Ecology, 32, 1031-1040.
[34] [张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 (2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.]
[35] Zhao HY, Geng YQ, Yang Y, Zhou HJ, Zhang HL, Wang L, Zhao GL (2016). Enzyme activities in litter of Pinus tabulaeformis and Acer truncatum forests in lower mountain area, Beijing. Journal of Central South University of Forestry & Technology, 36(6), 23-28.
[35] [赵恒毅, 耿玉清, 杨英, 周红娟, 张海兰, 王玲, 赵广亮 (2016). 北京低山区油松林和元宝枫林凋落物酶活性研究. 中南林业科技大学学报, 36(6), 23-28.]
[36] Zheng JQ, Guo RH, Li DS, Li D, Li JG, Zhu BK, Han SJ (2016). Effects of nitrogen deposition and drought on litter decomposition in a temperate forest. Journal of Beijing Forestry University, 38(4), 21-28.
[36] [郑俊强, 郭瑞红, 李东升, 李东, 李金功, 朱保坤, 韩士杰 (2016). 氮沉降和干旱对阔叶红松林凋落物分解的影响. 北京林业大学学报, 38(4), 21-28.]
Outlines

/

[an error occurred while processing this directive]