Chinese Journal of Plant Ecology >
Current and future trends of plant functional traits in macro-ecology
Received date: 2023-04-24
Accepted date: 2023-08-09
Online published: 2023-08-09
Supported by
National Natural Science Foundation of China(32201311);National Natural Science Foundation of China(31988102);CAS Project for Young Scientists in Basic Research(YSBR-037);National Science and Technology Basic Resources Survey Program of China(2019FY101300)
Plant functional traits are generally defined as relatively stable and measurable morphological, physiological, and phenological characteristics of plants that can indirectly affect plant growth, reproduction, and survival. Years of development have enabled the standardization of the definition, connotation, and measurement methods of plant functional traits. Now, the intraspecific and interspecific variation, biogeographic patterns, coordination, and the evolution of plant functional traits have been well explored. The gradual development of global plant functional trait databases since the 1990s has led to the expansion of plant functional traits beyond individual and local scales. Regional and global biogeographical studies on plant functional traits are gradually exploring community species coexistence mechanisms and maintenance of ecosystem functions. Researchers have found that traditional plant trait databases, which were created from published studies, have insufficient data to provide answers to questions about natural ecosystems. Therefore, constructing a plant trait database that considers compatibility and orderliness is crucial. As new databases and scientific concepts have emerged, the following areas have become the focus of studies on plant functional traits: 1) coordination between functional traits of different plant organs, and holistic examination of plant response to environmental changes; 2) multi-dimensional response and adaptation of various plant functional traits, and proposal of the concept of a plant trait network; 3) consideration of the complexity of plant community structure, and exploration of community assembly using plant functional diversity and trait moments; and 4) refinement of the scaling method for different levels of ecological organization, and recognition of plant community and ecosystem traits as critical bridges between plant traits and macroecology. These directions have pushed for the application of traditional functional trait research to natural, social, and economic systems, thus promoting the rapid development of trait-based studies to further solve regional eco-environmental problems.
LIU Cong-Cong , HE Nian-Peng , LI Ying , ZHANG Jia-Hui , YAN Pu , WANG Ruo-Meng , WANG Rui-Li . Current and future trends of plant functional traits in macro-ecology[J]. Chinese Journal of Plant Ecology, 2024 , 48(1) : 21 -40 . DOI: 10.17521/cjpe.2023.0111
[1] | Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, et al. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6, eaba3756. DOI: 10.1126/sciadv.aba3756. |
[2] | Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433. |
[3] | Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Thomas HJD, Alatalo JM, Alexander H, Anadon-Rosell A, Angers-Blondin S, Bai Y, Baruah G, Beest M, Berner L, Bj?rk RG, Blok D, et al. (2018). Tundra Trait Team: a database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 27, 1402-1411. |
[4] | Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192. |
[5] | Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X (2021). Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology & Evolution, 5, 1594-1603. |
[6] | Boonman CC, Benítez-López A, Schipper AM, Thuiller W, Anand M, Cerabolini BE, Cornelissen JH, Gonzalez-Melo H, Hattingh WN, Higuchi P, Laughlin DC, Onipchenko VG, Pe?uelas J, Poorter L, Soudzilovskaia NA, et al. (2020). Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 29, 1034-1051. |
[7] | Bruelheide H, Dengler J, Jimenez-Alfaro B, Purschke O, Hennekens SM, Chytry M, Pillar VD, Jansen F, Kattge J, Sandel B, Aubin I, Biurrun I, Field R, Haider S, Jandt U, et al. (2019). sPlot—A new tool for global vegetation analyses. Journal of Vegetation Science, 30, 161-186. |
[8] | Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytry M, Field R, Jansen F, Kattge J, Pillar VD, Schrodt F, Mahecha MD, Peet RK, et al. (2018). Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 2, 1906-1917. |
[9] | Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro- Martínez M, Montserrat-Martí G (1997). Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees, 11, 127-134. |
[10] | Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366. |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] | Cornelissen JHC, Sibma F, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455. |
[13] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[14] | Cornwell WK, Schwilk DW, Ackerly DD (2006). A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465-1471. |
[15] | Cui EQ, Weng ES, Yan ER, Xia JY (2020). Robust leaf trait relationships across species under global environmental changes. Nature Communications, 11, 2999. DOI: 10.1038/s41467-020-16839-9. |
[16] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, B?nisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[17] | Eviner VT (2004). Plant traits that influence ecosystem processes vary independently among species. Ecology, 85, 2215-2229. |
[18] | Fernández-Martínez M (2022). From atoms to ecosystems: elementome diversity meets ecosystem functioning. New Phytologist, 234, 35-42. |
[19] | Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klime?ová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, et al. (2021). A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 232, 973-1122. |
[20] | Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo D, et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology, 105, 1182-1196. |
[21] | Gallagher RV, Falster DS, Maitner BS, Salguero-Gómez R, Vandvik V, Pearse WD, Schneider FD, Kattge J, Poelen JH, Madin JS, Ankenbrand MJ, Penone C, Feng X, Adams VM, Alroy J, et al. (2020). Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology & Evolution, 4, 294-303. |
[22] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[23] | Garnier E, Stahl U, Laporte MA, Kattge J, Mougenot I, Kühn I, Laporte B, Amiaud B, Ahrestani FS, B?nisch G, Bunker DE, Cornelissen JHC, Díaz S, Enquist BJ, Gachet S, et al. (2017). Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 105, 298-309. |
[24] | Gross N, Le Bagousse-Pinguet Y, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1, 132. DOI: 10.1038/s41559-017-0132. |
[25] | Gross N, Le Bagousse-Pinguet Y, Liancourt P, Saiz H, Violle C, Munoz F (2021). Unveiling ecological assembly rules from commonalities in trait distributions. Ecology Letters, 24, 1668-1680. |
[26] | Han W, Fang J, Reich PB, Ian Woodward F, Wang Z (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796. |
[27] | Hanisch M, Schweiger O, Cord AF, Volk M, Knapp S (2020). Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands. Journal of Applied Ecology, 57, 1535-1550. |
[28] | He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020a). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918. |
[29] | He N, Liu C, Piao S, Sack L, Xu L, Luo Y, He J, Han X, Zhou G, Zhou X, Lin Y, Yu Q, Liu S, Sun W, Niu S, et al. (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200-210. |
[30] | He NP, Liu CC, Xu L, Yu GR (2020). Ecosystem traits open new insights into macroecology: opportunity and challenge. Acta Ecologica Sinica, 40, 2507-2522. |
[何念鹏, 刘聪聪, 徐丽, 于贵瑞 (2020). 生态系统性状对宏生态研究的启示与挑战. 生态学报, 40, 2507-2522.] | |
[31] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018a). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018a). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[32] | He N, Yan P, Liu C, Xu L, Li M, van Meerbeek K, Zhou G, Zhou G, Liu S, Zhou X, Li S, Niu S, Han X, Buckley TN, Sack L, et al. (2023). Predicting ecosystem productivity based on plant community traits. Trends in Plant Science, 28, 43-53. |
[33] | He NP, Zhang JH, Liu CC, Xu L, Chen Z, Liu Y, Wang RL, Zhao N, Xu ZW, Tian J, Wang Q, Zhu JX, Li Y, Hou JH, Yu GR (2018b). Patterns and influencing factors of traits in forest ecosystems: synthesis and perspectives on the synthetic investigation from the north-east transect of eastern China (NETEC). Acta Ecologica Sinica, 38, 6359-6382. |
[何念鹏, 张佳慧, 刘聪聪, 徐丽, 陈智, 刘远, 王瑞丽, 赵宁, 徐志伟, 田静, 王情, 朱剑兴, 李颖, 侯继华, 于贵瑞 (2018b). 森林生态系统性状的空间格局与影响因素研究进展——基于中国东部样带的整合分析. 生态学报, 38, 6359-6382.] | |
[34] | He P, Gleason SM, Wright IJ, Weng E, Liu H, Zhu S, Lu M, Luo Q, Li R, Wu G, Yan E, Song Y, Mi X, Hao G, Reich PB, et al. (2020b). Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 26, 1833-1841. |
[35] | Jin Y, Qian H (2022). V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 4, 335-339. |
[36] | Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, B?nisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JH, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[37] | Kattge J, Sandel B, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GD, Aakala T, Abedi M, Acosta AT, Adamidis GC, Adamson K, Aiba M, Albert CH, et al. (2020). TRY plant trait database—Enhanced coverage and open access. Global Change Biology, 26, 5343-5343. |
[38] | Kraft NJB, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802. |
[39] | Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. |
[40] | Li B, Suzuki JI, Hara T (1998). Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia, 115, 293-301. |
[41] | Li Y, Hou JH, Xu L, Li MX, Chen Z, Zhang ZH, He NP (2022a). Variation in functional trait diversity from tropical to cold-temperate forests and linkage to productivity. Ecological Indicators, 138, 108864. DOI: 10.1016/j.ecolind.2022.108864. |
[42] | Li Y, Li Q, Xu L, Li MX, Chen Z, Song ZP, Hou JH, He NP (2021). Plant community traits can explain variation in productivity of selective logging forests after different restoration times. Ecological Indicators, 131, 108181. DOI: 10.1016/j.ecolind.2021.108181. |
[43] | Li Y, Liu CC, Sack L, Xu L, Li MX, Zhang JH, He NP (2022b). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457. |
[44] | Liang X, Zhang T, Lu X, Ellsworth DS, BassiriRad H, You C, Wang D, He P, Deng Q, Liu H, Mo J, Ye Q (2020). Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biology, 26, 3585-3600. |
[45] | Liu C, He N, Zhang J, Li Y, Wang Q, Sack L, Yu G (2018). Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 32, 20-28. |
[46] | Liu CC, Li Y, He NP (2022a). Differential adaptation of lianas and trees in wet and dry forests revealed by trait correlation networks. Ecological Indicators, 135, 108564. DOI: 10.1016/j.ecolind.2022.108564. |
[47] | Liu CC, Li Y, Xu L, Li MX, Wang JM, Yan P, He NP (2021). Stomatal arrangement pattern: a new direction to explore plant adaptation and evolution. Frontiers in Plant Science, 12, 655255. DOI: 10.3389/fpls.2021.655255. |
[48] | Liu C, Li Y, Zhang J, Baird AS, He N (2020). Optimal community assembly related to leaf economic-hydraulic- anatomical traits. Frontiers in Plant Science, 11, 341. DOI: 10.3389/fpls.2020.00341. |
[49] | Liu C, Sack L, Li Y, He N (2022b). Contrasting adaptation and optimization of stomatal traits across communities at continental scale. Journal of Experimental Botany, 73, 6405-6416. |
[50] | Liu H, Ye Q, Simpson KJ, Cui E, Xia J (2022c). Can evolutionary history predict plant plastic responses to climate change? New Phytologist, 235, 1260-1271. |
[51] | Liu R, Yang X, Gao R, Huang Z, Cornelissen JHC (2023). Coordination of economics spectra in leaf, stem and root within the genus Artemisia along a large environmental gradient in China. Global Ecology and Biogeography, 32, 324-338. |
[52] | Liu SN, Yan ZB, Chen YH, Zhang MX, Chen J, Han WX (2019). Foliar pH, an emerging plant functional trait: biogeography and variability across Northern China. Global Ecology and Biogeography, 28, 386-397. |
[53] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[54] | Luo W, Griffin-Nolan RJ, Song L, Te NW, Chen J, Shi Y, Muraina TO, Wang Z, Smith MD, Yu Q, Knapp AK, Han X, Collins SL (2023). Interspecific and intraspecific trait variability differentially affect community-weighted trait responses to and recovery from long-term drought. Functional Ecology, 37, 504-512. |
[55] | Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[56] | Maitner BS, Boyle B, Casler N, Condit R, Donoghue JI, Durán SM, Guaderrama D, Hinchliff CE, J?rgensen PM, Kraft NJB, McGill B, Merow C, Morueta-Holme N, Peet RK, Sandel B, et al. (2018). The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 9, 373-379. |
[57] | Martin AR, Isaac ME (2015). REVIEW: plant functional traits in agroecosystems: a blueprint for research. Journal of Applied Ecology, 52, 1425-1435. |
[58] | Midolo G, de Frenne P, H?lzel N, Wellstein C (2019). Global patterns of intraspecific leaf trait responses to elevation. Global Change Biology, 25, 2485-2498. |
[59] | Mlambo MC (2014). Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research. Biodiversity and Conservation, 23, 781-790. |
[60] | Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, Mayfield MM, Pitman A, Wood JT, Westoby M (2007). Global patterns in seed size. Global Ecology and Biogeography, 16, 109-116. |
[61] | Paroshy NJ, Doraisami M, Kish R, Martin AR (2021). Carbon concentration in the world’s trees across climatic gradients. New Phytologist, 232, 123-133. |
[62] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[63] | Petchey OL, Hector A, Gaston KJ (2004). How do different measures of functional diversity perform? Ecology, 85, 847-857. |
[64] | Roddy AB, Martínez-Perez C, Teixido AL, Cornelissen TG, Olson ME, Oliveira RS, Silveira FAO (2021). Towards the flower economics spectrum. New Phytologist, 229, 665-672. |
[65] | Sack L, Cornwell WK, Santiago LS, Barbour MM, Choat B, Evans JR, Munns R, Nicotra A (2010). A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Functional Plant Biology, 37, 687-693. |
[66] | Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000. |
[67] | Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, et al. (2015). A global meta- analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419. |
[68] | Sobral M (2021). All traits are functional: an evolutionary viewpoint. Trends in Plant Science, 26, 674-676. |
[69] | Song B, Sun L, Barrett SCH, Moles AT, Luo Y, Armbruster WS, Gao Y, Zhang S, Zhang Z, Sun H (2022). Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. New Phytologist, 235, 2054-2065. |
[70] | Tang T, Zhang N, Bongers FJ, Staab M, Schuldt A, Fornoff F, Lin H, Cavender-Bares J, Hipp AL, Li S, Liang Y, Han B, Klein AM, Bruelheide H, Durka W, et al. (2022). Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks. eLife, 11, e78703. DOI: 10.7554/eLife.78703. |
[71] | Thomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Díaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, et al. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 11, 1351. DOI: 10.1038/s41467-020-15014-4. |
[72] | Tian D, Kattge J, Chen Y, Han W, Luo Y, He J, Hu H, Tang Z, Ma S, Yan Z, Lin Q, Schmid B, Fang J (2019). A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 100, e02812. DOI: 10.1002/ecy.2812. |
[73] | Valverde-Barrantes OJ, Maherali H, Baraloto C, Blackwood CB (2020). Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. New Phytologist, 228, 541-553. |
[74] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[75] | Wang H, Harrison SP, Li M, Prentice IC, Qiao S, Wang R, Xu H, Mengoli G, Peng Y, Yang Y (2022). The China plant trait database version 2. Scientific Data, 9, 769. DOI: 10.1038/s41597-022-01884-4. |
[76] | Wang H, Harrison SP, Prentice IC, Yang Y, Bai F, Togashi HF, Wang M, Zhou S, Ni J (2018). The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology, 99, 500-512. |
[77] | Wang RL, Wang QF, Zhao N, Yu GR, He NP (2017). Complex trait relationships between leaves and absorptive roots: coordination in tissue N concentration but divergence in morphology. Ecology and Evolution, 7, 2697-2705. |
[78] | Wang RL, Yu R, He NP, Wang QF, Zhao N, Xu ZW (2016). Latitudinal variation of leaf morphological traits from species to communities along a forest transect in Eastern China. Journal of Geographical Sciences, 26, 15-26. |
[79] | Wang RZ, Huang WW, Chen L, Ma LN, Guo CY, Liu XQ (2011). Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in Northeast China. PLoS ONE, 6, e26209. DOI: 10.1371/journal.pone.0026209. |
[80] | Wang ZG, Wang CK (2021). Responses of tree leaf gas exchange to elevated CO2 combined with changes in temperature and water availability: a global synthesis. Global Ecology and Biogeograpy, 30, 2500-2512. |
[81] | Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169. |
[82] | Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, et al. (2021). An integrated framework of plant form and function: the belowground perspective. New Phytologist, 232, 42-59. |
[83] | Wigley BJ, Charles-Dominique T, Hempson GP, Stevens N, TeBeest M, Archibald S, Bond WJ, Bunney K, Coetsee C, Donaldson J, Fidelis A, Gao X, Gignoux J, Lehmann C, Massad TJ, et al. (2020). A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 68, 473-531. |
[84] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[85] | Yan P, Li MX, Yu GR, Qi Y, He NP (2022). Plant community traits associated with nitrogen can predict spatial variability in productivity. Ecological Indicators, 140, 109001. DOI: 10.1016/j.ecolind.2022.109001. |
[86] | Yang J, Cao M, Swenson NG (2018). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33, 326-336. |
[87] | Zhang J, He N, Liu C, Xu L, Chen Z, Li Y, Wang R, Yu G, Sun W, Xiao C, Chen H, Reich PB (2020). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543. |
[88] | Zhang JH, Ren TT, Yang JJ, Xu L, Li MX, Zhang YH, Han XG, He NP (2021a). Leaf multi-element network reveals the change of species dominance under nitrogen deposition. Frontiers in Plant Science, 12, 580340. DOI: 10.3389/fpls.2021.580340. |
[89] | Zhang J, Zhao N, Liu C, Yang H, Li M, Yu G, Wilcox K, Yu Q, He N (2018). C:N:P stoichiometry in China’s forests: from organs to ecosystems. Functional Ecology, 32, 50-60. |
[90] | Zhang Y, He NP, Li MX, Yan P, Yu GR (2021b). Community chlorophyll quantity determines the spatial variation of grassland productivity. Science of the Total Environment, 801, 149567. DOI: 10.1016/j.scitotenv.2021.149567. |
[91] | Zhao N, Yu GR, He NP, Wang QF, Guo DL, Zhang XY, Wang RL, Xu ZW, Jiao CC, Li NN, Jia YL (2016). Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecology and Biogeography, 25, 359-367. |
[92] | Zhao N, Yu GR, Wang QF, Wang RL, Zhang JH, Liu CC, He NP (2020). Conservative allocation strategy of multiple nutrients among major plant organs: from species to community. Journal of Ecology, 108, 267-278. |
/
〈 |
|
〉 |