[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Research Articles

Nutrient characteristics and adaptability of plant leaves in Tiankeng Complex of Dashiwei, Guangxi, China

  • ZHENG Li-Li ,
  • YU Lin-Lan ,
  • DAI Ping ,
  • XUE Yue-Gui ,
  • LONG Ping
Expand
  • 1Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
    2Guilin Forestry and Landscape Bureau, Guilin, Guangxi 541199, China
    3Leye-Fengshan UNESCO Global Geopark of China, Baise, Guangxi 533299, China

Received date: 2023-07-28

  Accepted date: 2024-05-22

  Online published: 2024-05-23

Supported by

National Natural Science Foundation of China(31960047);Guangxi Key Research and Development Program (Guike)(AB21220057)

Abstract

Aims The ecological stoichiometric characteristics and variation of plant leaves can reflect the response of plants to their environment, serving as a key to understanding the interaction between plants and the environment. The unique Tiankeng environment creates favorable conditions for plant growth. By exploring the nutrient utilization characteristics and environmental adaptability differences of Tiankeng plants, this study aims to reveal the adaptive mechanism of Tiankeng forest plants, and basic data can be provided for nutrient cycling and community construction in Tiankeng forest.
Methods Our study compared the chemical stoichiometry of carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) nutrients in the leaves of plants inside and outside the Tiankeng Complex in Dashiwei, Guangxi. Statistical methods such as correlation analysis and redundancy analysis were used to explore the intrinsic relationship between chemical stoichiometry and the influence of environment on these characteristics.
Important findings (1) The leaves of 64 plant species from 36 families and 55 genera in the study area have lower C content, higher N, P, K, Ca, Mg contents, and lower C:N, C:P compared to plants in other karst and terrestrial plants in China. This indicates that the plants in Tiankeng Complex are characterized by low C sequestration, high nutrient accumulation, high growth rate, and low nutrient utilization efficiency. (2) The N:P mean value of the plant leaves in the Dashiwei Tiankeng Complex was 16.65, the N:K mean value was 1.50, and the K:P mean value was 10.10, indicating that the Tiankeng plants generally have an abundance of K content but are limited by N and P contents. (3) There were significant differences in the nutrient content and stoichiometric ratios of plants in different locations and functional groups. Different environments and plant types adopt distinct nutrient absorption strategies. (4) Correlation analysis showed that there were significant correlations between most of the nutrient contents and stoichiometric ratios of plant leaves, indicating that the nutrient uptake by plant leaves had a certain proportional composition and coordinated relationship. (5) Redundancy analysis showed that soil is a key environmental factor influencing leaf nutrients. The results of our study revealed the characteristics of plant nutrient utilization, habitat nutrient differences, and plant adaptability to the environment in the Dashiwei Tiankeng Complex, providing basic data for exploring the nutrient cycling and community construction mechanism of Tiankeng forest ecosystems.

Cite this article

ZHENG Li-Li , YU Lin-Lan , DAI Ping , XUE Yue-Gui , LONG Ping . Nutrient characteristics and adaptability of plant leaves in Tiankeng Complex of Dashiwei, Guangxi, China[J]. Chinese Journal of Plant Ecology, 2024 , 48(7) : 872 -887 . DOI: 10.17521/cjpe.2023.0217

[an error occurred while processing this directive]

References

[1] Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
[2] Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agricultural Pres, Beijing.
  [鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.]
[3] Chen HW, Yang CX, Tang LJ (2016). Ecological stoichiometric characteristics in leaf under different vegetation types of Jungar Banner opencast coal mining area. Research of Soil and Water Conservation, 23(6), 9-14.
  [陈红武, 杨晨旭, 汤利杰 (2016). 准格尔旗矿区不同植物叶片的生态化学计量学研究. 水土保持研究, 23(6), 9-14.]
[4] Chen KH (2020). Stoichiometric Characterastics and Ecological Implications of Plants in Natural Forests and Degraded Communities Across Degraded Karst Basin in Southern Yunnan Province. Master degree dissertation, Shanghai Jiao Tong University, Shanghai.
  [陈柯豪 (2020). 滇南喀斯特天然森林和退化群落植物化学计量特点和生态意义. 硕士学位论文, 上海交通大学, 上海.]
[5] Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
[6] Dong SL, Liu EB (2015). Comparison of leaf functional traits of dominant woody plants on shady slope and sunny slope in the loessial hilly region. Research of Soil and Water Conservation, 22(4), 326-331.
  [董水丽, 刘恩斌 (2015). 黄土丘陵区阴坡和阳坡优势木本植物叶功能性状比较. 水土保持研究, 22(4), 326-331.]
[7] Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
[8] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
[9] Feng HZ (2015). The Study on Origin and Evolution of Karst Tiankeng Flora in Dashiwei, Guangxi. Master degree dissertation, Guangxi Normal University, Guilin, Guangxi.
  [冯慧喆 (2015). 广西大石围天坑群植物区系的起源和演化研究. 硕士学位论文, 广西师范大学, 广西桂林.]
[10] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
[11] Hu Y, Tang L, Zhang Y, Wang P, Li XC, Wang Y, Yao S (2021). Leaf stoichiometry characteristics of plants in secondary forest of Xiaonanhai Tiankeng Group. Shaanxi Forest Science and Technology, 49(4), 14-20.
  [胡义, 唐力, 张瑜, 王鹏, 李修成, 王研, 姚珊 (2021). 小南海天坑群外围次生林植物叶片化学计量特征研究. 陕西林业科技, 49(4), 14-20.]
[12] Huang BJ, Cai WT, Xue YG, Zhu XW (2004). Research on tourism resource characteristics of Tiankeng Group in Dashiwei, Guangxi. Geography and Geo-Information Science, 20(1), 109-112.
  [黄保健, 蔡五田, 薛跃规, 朱学稳 (2004). 广西大石围天坑群旅游资源研究. 地理与地理信息科学, 20(1), 109-112.]
[13] Huang FZ, Li JX, Li DX, Chen T, Wang B, Lu SH, Li XK (2021). Physiological and ecological adaptation of karst woody plants to drought. Guihaia, 41, 1644-1653.
  [黄甫昭, 李健星, 李冬兴, 陈婷, 王斌, 陆树华, 李先琨 (2021). 岩溶木本植物对干旱的生理生态适应. 广西植物, 41, 1644-1653.]
[14] Huang G, Yu LL, Liu XY, Chen M, Xue YG (2024). Characteristics of carbon, nitrogen and phosphorus stoichiometry of leaf, litter and soil in karst Tiankeng forest. Journal of Tropical and Subtropical Botany, 32, 367-377.
  [黄贵, 余林兰, 刘昕宇, 陈铭, 薛跃规 (2024). 天坑森林植物叶-凋落物-土壤C、N、P生态化学计量特征. 热带亚热带植物学报, 32, 367-377.]
[15] Huang LJ, Yu YM, An XF, Yu LL, Xue YG (2022). Leaf functional traits, species diversity and functional diversity of plant community in Tiankeng forests. Acta Ecologica Sinica, 42, 10264-10275.
  [黄林娟, 于燕妹, 安小菲, 余林兰, 薛跃规 (2022). 天坑森林植物群落叶功能性状、物种多样性和功能多样性特征. 生态学报, 42, 10264-10275.]
[16] Huang LJ, Yu YM, An XF, Yu LL, Xue YG (2021). Interspecific association of main woody plants in Tiankeng forests of Dashiwei Tiankeng Group, Guangxi. Guihaia, 41, 695-706.
  [黄林娟, 于燕妹, 安小菲, 余林兰, 薛跃规 (2021). 广西大石围天坑群天坑森林主要木本植物种间关联性研究. 广西植物, 41, 695-706.]
[17] Jing HX, Sun NX, Umair M, Liu CJ, Du HM (2020). Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China. Chinese Journal of Plant Ecology, 44, 56-69.
  [敬洪霞, 孙宁骁, Umair M, 刘春江, 杜红梅 (2020). 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应. 植物生态学报, 44, 56-69.]
[18] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
[19] Neugebauer K, Broadley MR, El-Serehy HA, George TS, McNicol JW, Moraes MF, White PJ (2018). Variation in the angiosperm ionome. Physiologia Plantarum, 163, 306-322.
[20] Li RY (2009). Study on the development of tourism product in geological parks. Journal of Anhui Agricultural Sciences, 37, 4207-4208.
  [李如友 (2009). 地质公园旅游产品开发研究——以广西乐业大石围天坑群国家地质公园为例. 安徽农业科学, 37, 4207-4208.]
[21] Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science, 31, 1716-1725.
  [李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.]
[22] Lin Y (2005). Species Diversity of Karst Tiankeng Forest in Dashiwei Tiankengs, Guangxi. Master degree dissertation, Guangxi Normal University, Guilin, Guangxi.
  [林宇 (2005). 广西大石围天坑群天坑森林物种多样性研究. 硕士学位论文, 广西师范大学, 广西桂林.]
[23] Luo XQ, Zhang GL, Ruan YH, Liu X, Yang HY, Zheng YL (2019). Nutrient contents and stoichiometric characteristics of common plant leaves in the Leigong Mountain Nature Reserve. Jiangsu Agricultural Sciences, 47(11), 309-312.
  [罗绪强, 张桂玲, 阮英慧, 刘兴, 杨鸿雁, 郑延丽 (2019). 雷公山自然保护区常见植物叶片营养元素含量及其化学计量特征. 江苏农业科学, 47(11), 309-312.]
[24] Luo XQ, Zhang GL, Du XL, Wang SJ, Yang HY, Huang TZ (2014). Characteristics of element contents and ecological stoichiometry in leaves of common calcicole species in Maolan karst forest. Ecology and Environmental Sciences, 23, 1121-1129.
  [罗绪强, 张桂玲, 杜雪莲, 王世杰, 杨鸿雁, 黄天志 (2014). 茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征. 生态环境学报, 23, 1121-1129.]
[25] Luo YX, Tang QM, Xue YG (2020). Study on diyersity charateristics of bryophytes in Chuandong Tiankeng, Guangxi. Journal of Guangxi Normal University (Natural Science Edition), 38(5), 104-111.
  [罗奕杏, 唐启明, 薛跃规 (2020). 广西穿洞天坑苔藓植物多样性特征研究. 广西师范大学学报(自然科学版), 38(5), 104-111.
[26] Niklas KJ, Cobb ED (2005). N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 92, 1256-1263.
[27] Niu DC, Li Q, Jiang SG, Chang PJ, Fu H (2013). Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chinese Journal of Plant Ecology, 37, 317-325.
  [牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 37, 317-325.]
[28] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
[29] Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
[30] White PJ, Broadley MR, El-Serehy HA, George TS, Neugebauer K (2018). Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry. Annals of Botany, 122, 221-226.
[31] Pi FJ, Yuan CJ, Yu LF, Yan LB, Wu L, Yang R (2016). Ecological stoichiometry characteristics of plant leaves from the main dominant species of natural secondary forest in the central of Guizhou. Ecology and Environmental Sciences, 25, 801-807.
  [皮发剑, 袁丛军, 喻理飞, 严令斌, 吴磊, 杨瑞 (2016). 黔中天然次生林主要优势树种叶片生态化学计量特征. 生态环境学报, 25, 801-807.]
[32] Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
[33] Pu GZ, Lv YN, Dong LN, Zhou LW, Huang KC, Zeng DJ, Mo L, Xu GP (2019). Profiling the bacterial diversity in a typical karst Tiankeng of China. Biomolecules, 9, 187. DOI: 10.3390/biom9050187.
[34] Qi DH, Wen ZM, Wang HX, Guo R, Yang SS (2016). Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and Gully Region of the Loess Plateau, China. Acta Ecologica Sinica, 36, 6420-6430.
  [戚德辉, 温仲明, 王红霞, 郭茹, 杨士梭 (2016). 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应. 生态学报, 36, 6420-6430.]
[35] Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 28, 2665-2673.
  [任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
[36] Shui W, Chen YP, Wang YW, Su ZA, Zhang S (2015). Origination, study progress and prospect of karst Tiankeng research in China. Acta Geographica Sinica, 70, 431-446.
  [税伟, 陈毅萍, 王雅文, 苏正安, 张素 (2015). 中国喀斯特天坑研究起源、进展与展望. 地理学报, 70, 431-446.]
[37] Su SL, Huang K, Ma B (2012). Diversity study on pteridophyte flora in the area of Dashiwei Tiankeng Group of Leye County. Hubei Agricultural Sciences, 51, 948-950.
  [苏仕林, 黄珂, 马博 (2012). 广西乐业大石围天坑群区蕨类植物多样性研究. 湖北农业科学, 51, 948-950.]
[38] Su YQ, Tang QM, Mo FY, Xue YG (2017). Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Scientific Reports, 7, 4249. DOI: 10.1038/s41598-017-04592-x.
[39] Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
[40] Tilman D (1997). Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78, 81-92.
[41] Traiser C, Klotz S, Uhl D, Mosbrugger V (2005). Environmental signals from leaves—A physiognomic analysis of European vegetation. New Phytologist, 166, 465-484.
[42] Tu YL, Yang J (1995). Study on the types of karst shrub communities in Guizhou. Journal of Guizhou Normal University (Natural Sciences), 13(3), 27-43.
  [屠玉麟, 杨军 (1995). 贵州喀斯特灌丛群落类型研究. 贵州师范大学学报(自然科学版), 13(3), 27-43.]
[43] Venterink HO, Wassen MJ, Verkroost AWM, de Ruiter PC (2003). Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84, 2191-2199.
[44] Wang KB, Shangguan ZP (2011). Seasonal variations in leaf C, N, and P stoichiometry of typical plants in the Yangou watershed in the loess hilly gully region. Acta Ecologica Sinica, 31, 4985-4991.
  [王凯博, 上官周平 (2011). 黄土丘陵区燕沟流域典型植物叶片C、N、P化学计量特征季节变化. 生态学报, 31, 4985-4991.]
[45] Wei YW, Zhang T, Liu J, Han X, Qin SJ, Du TY, Zhou YB (2021). Spatial distribution and stoichiometry characteristics of leaves and soil organic carbon, nitrogen, phosphorus and calcium of the main needle tree species—Pinus koraiensis. Journal of Shenyang Agricultural University, 52, 419-427.
  [魏亚伟, 张彤, 刘静, 韩叙, 秦胜金, 杜天雨, 周永斌 (2021). 红松叶片与土壤有机碳、氮、磷、钙的空间分布及其化学计量学特征. 沈阳农业大学学报, 52, 419-427.]
[46] Wu P, Cui YC, Zhao WJ, Hou YJ, Zhu J, Ding FJ, Yang WB (2020). Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China. Acta Ecologica Sinica, 40, 5063-5080.
  [吴鹏, 崔迎春, 赵文君, 侯贻菊, 朱军, 丁访军, 杨文斌 (2020). 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报, 40, 5063-5080.]
[47] Xing XR, Han XG, Chen LZ (2000). A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 11, 785-790.
  [邢雪荣, 韩兴国, 陈灵芝 (2000). 植物养分利用效率研究综述. 应用生态学报, 11, 785-790.]
[48] Xu KK, Lu J, Liu RL, Li ZY, Li J (2016). Spatial distribution of chemical element of leaves in Jiulianshan evergreen broad-leaved forest. Journal of Central South University of Forestry & Technology, 36(8), 77-87.
  [许宽宽, 卢建, 刘仁林, 李中阳, 李江 (2016). 九连山常绿阔叶林叶片化学元素的空间分布. 中南林业科技大学学报, 36(8), 77-87.]
[49] Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China. Chinese Journal of Plant Ecology, 35, 353-361.
  [阎凯, 付登高, 何峰, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.]
[50] Yang H, Li QF, Tu CY, Cao JH (2015). Carbon, nitrogen and phosphorus stoichiometry of typical plants in karst area of Maocun, Guilin. Guihaia, 35, 493-499.
  [杨慧, 李青芳, 涂春艳, 曹建华 (2015). 桂林毛村岩溶区典型植物叶片碳、氮、磷化学计量特征. 广西植物, 35, 493-499.]
[51] Yu LL, Luo YX, Xue YG, An XF, Huang G, Liu XY, Chen M (2023). Differences and correlations in leaf functional traits of woody plants in different microhabitats of Shenmu Tiankeng. Guihaia, 43, 494-503.
  [余林兰, 罗奕杏, 薛跃规, 安小菲, 黄贵, 刘昕宇, 陈铭 (2023). 神木天坑不同小生境木本植物叶功能性状的差异与关联. 广西植物, 43, 494-503.]
[52] Yu YM, Huang LJ, Xue YG (2021). Characteristics of different plant communities in the Dashiwei Tiankeng Group, Guangxi, China. Chinese Journal of Plant Ecology, 45, 96-103.
  [于燕妹, 黄林娟, 薛跃规 (2021). 广西大石围天坑群不同植物群落的特征. 植物生态学报, 45, 96-103.]
[53] Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019.
  [曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
[54] Zhang GQ, Zhang P, Chen YM, Peng SZ, Cao Y (2018). Stoichiometric characteristics of Robinia pseudoacacia and Pinus tabuliformis plantation ecosystems in the loess hilly-gully region, China. Acta Ecologica Sinica, 38, 1328-1336.
  [章广琦, 张萍, 陈云明, 彭守璋, 曹扬 (2018). 黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征. 生态学报, 38, 1328-1336.]
[55] Zhang HW, Ma JY, Sun W, Chen FH (2010). Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China. Acta Ecologica Sinica, 30, 5747-5758.
  [张慧文, 马剑英, 孙伟, 陈发虎 (2010). 不同海拔天山云杉叶功能性状及其与土壤因子的关系. 生态学报, 30, 5747-5758.]
[56] Zhang K, He MZ, Li XR, Tan HJ, Gao YH, Li G, Han GJ, Wu YY (2014). Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert. Acta Ecologica Sinica, 34, 6538-6547.
  [张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨 (2014). 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 34, 6538-6547.]
[57] Zhang T, Weng Y, Yao FJ, Shi YT, Cui GW, Hu GF (2014). Effect of grazing intensity on ecological stoichiometry of Deyeuxia angustifolia and meadow soil. Acta Prataculturae Sinica, 23(2), 20-28.
  [张婷, 翁月, 姚凤娇, 史印涛, 崔国文, 胡国富 (2014). 放牧强度对草甸植物小叶章及土壤化学计量比的影响. 草业学报, 23(2), 20-28.]
[58] Zheng WJ, Bao WK, Gu B, He X, Leng L (2007). Carbon concentration and its characteristics in terrestrial higher plants. Chinese Journal of Ecology, 26, 307-313.
  [郑帷婕, 包维楷, 辜彬, 何晓, 冷俐 (2007). 陆生高等植物碳含量及其特点. 生态学杂志, 26, 307-313.]
[59] Zhou JN, Huang J, Ma JM, Mo YH, Wang HM (2020). Leaf nutrient characteristics and adaptability of 50 common plant species in the karst rocky mountains of Guilin. Acta Ecologica Sinica, 40, 6126-6134.
  [周俊妞, 黄婧, 马姜明, 莫燕华, 王海苗 (2020). 桂林喀斯特石山50种常见植物叶片养分特征及其适应性差异. 生态学报, 40, 6126-6134.]
Outlines

/

[an error occurred while processing this directive]