%0 Journal Article %A Xiu-Qing NIE %A Dong WANG %A Guo-Ying ZHOU %A Feng XIONG %A Yan-Gong DU %T Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region %D 2021 %R 10.17521/cjpe.2021.0113 %J Chinese Journal of Plant Ecology %P 996-1005 %V 45 %N 9 %X

Aims Microbial biomass and their stoichiometric characteristics not only are important parameters of soil nutrient cycling, but also can contribute to prediction of climate changes, improvement of model accuracy, and understanding of terrestrial nutrient cycling. Our objective was to investigate microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) concentrations and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region.

Methods Using data from 50 sites, we explored MBC, MBN, MBP, their stoichiometry and their relationships with the controlling factors of alpine wetlands in the Three Rivers Source Region.

Important findings Our results showed that 1) MBC, MBN, MBP concentrations were 105.11, 3.79, 0.78 mmol·kg-1, respectively, and MBC:MBN, MBC:MBP, MBN:MBP, MBC:MBN:MBP were 50.56, 184.89, 5.42, 275:5:1, respectively. 2) Soil physical and chemical properties could significantly affect MBC, MBN and MBP concentration. Soil moisture had significantly negative effects on both MBC:MBN and MBC:MBP, while soil density had positive effects on both MBC:MBN and MBC:MBP. Soil total nitrogen content had negative relationship with MBC:MBP, while having weak effects on MBC:MBN. Soil physical and chemical properties also had weak effects on MBN:MBP. 3) Generally, soil microbial community composition had significant effects on MBC, MBN and MBP concentration. Soil microbial community composition had similar effects on MBC:MBN and MBC:MBP. Total phospholipid fatty acid (PLFA) content, gram-positive bacteria, gram-negative bacteria, bacteria, actinomycete, arbuscular mycorrhizal fungi concentration, and other PLFA content had negative effects on MBC:MBN and MBC:MBP, while fungi:bacteria had positive effects on both MBC:MBN and MBC:MBP, but fungi had weak relationships with both MBC:MBN and MBC:MBP. Except for arbuscular mycorrhizal fungi, MBN:MBP had weak relationships with soil microbial community composition. Soil physical and chemical properties, and soil microbial community composition had significant effects on soil microbial biomass and their stoichiometric characteristics in Three Rivers Sources Regions in the alpine wetlands, which are greatly helpful for deeply understanding of terrestrial high altitude nutrient cycling.

%U https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0113