利用聚类算法监测森林乔木物种多样性
衣海燕, 曾源, 赵玉金, 郑朝菊, 熊杰, 赵旦

Forest species diversity mapping based on clustering algorithm
YI Hai-Yan, ZENG Yuan, ZHAO Yu-Jin, ZHENG Zhao-Ju, XIONG Jie, ZHAO Dan
表2 常用冠层结构参数
Table 2 Canopy structural parameters derived from LiDAR
结构参数 Structural parameter 描述 Description 引用 Reference
95%分位数高度
95% quantile height
近似于森林冠层峰值高度, 由首次回波统计获得
Approximates the peak height in meters of the forest canopy, obtained from the point cloud of the first echo
Ria?o et al., 2004
平均植被高度
Mean vegetation height
植被的平均高度, 由各植被分层首次回波和末次回波统计获得
The mean height of vegetation, obtained from the point cloud of the first and last echo of each vegetation layer
Lefsky et al., 2002
植被穿透率
Vegetation permeability
植被首次回波在二次回波中的比例, 由植被的首次回波和所有二次回波计算得到
Proportion of first vegetation returns (see above) for which there is a second return, obtained from the point cloud of the first echo and all secondary echoes of vegetation
Moffiet et al., 2005
叶高度多样性
Foliage height diversity
描述植被剖面的叶密度和高度分布, 公式: $h=-\mathop{\sum }^{}{{p}_{i}}\ln {{p}_{i}}$, 其中, pi表示不同高度间隔内的点云返回值与所有返回值的比例, h表示树高
Metric intended to characterize the density and height distribution of foliage in a vegetation profile. Formula: $h=-\mathop{\sum }^{}{{p}_{i}}\ln {{p}_{i}}$, where pi is the ratio of return value of point cloud in different height intervals to all return values, h is the tree height
Clawges et al., 2008
标准偏差(首次回波)
Standard deviation (first return)
反映单木树高的离散程度 Metric the dispersion of each individual tree Nelson et al., 1988
平均绝对偏差
Mean absolute deviation
所有单木树高值与其算术平均值的偏差的绝对值的平均
Mean of absolute value of the deviation of tree height from the mean
Zhao et al., 2018
偏度(首次回波)
Skewness (first return)
与峰态(首次回波)高度相关
Highly correlated with kurtosis
Antonarakis et al., 2008