种间互作网络的结构、生态系统功能及稳定性机制研究
李海东, 吴新卫, 肖治术

Assembly, ecosystem functions, and stability in species interaction networks
LI Hai-Dong, WU Xin-Wei, XIAO Zhi-Shu
表1 二分网络结构指数
Table 1 Explanation of the bipartite network structure indices
水平 Level 结构指数和解释 Structure indices and explanation
物种水平
Species level
物种连接数 Species degree 网络中某物种与其他营养级物种发生联系的数量 The number of interacting partners
物种强度 Species strength 指某一个动物或植物物种对植物或动物物种的依赖度或所受作用强度的总和。
The sum of dependences or interaction strengths of the animals on a specific plant species, or the sum of dependences of the plants on a specific animal species.
嵌套等级 Nested rank 指在一个网络嵌套矩阵中所处的等级; 数值越低, 表示该物种更为泛化, 反之亦然。
Which is measured as the position in the nestedness matrix. A generalist will interact with more species and thus have a rank closer to 1, while specialists will have ranks with higher values.
特化指数 Specialization index 用来衡量物种的特化程度的指数(0-1) Assesses the specialization of a species (ranging from 0 to 1)
连接多样性 Partner diversity 某一物种的连接伙伴的Shannon多样性, 用于衡量物种的泛化程度。
Shannon diversity of the interacting partners of each species, which indicating generalization of a species.
网络水平
Network level
连接度 Connectance 网络中实际连接数与潜在连接数的比值
The proportion of potential links that are actually realized
物种平均连接数 Links per species 网络中连接数与物种丰富度的比值 The average links per species
嵌套性 Nestedness 在嵌套的互作网络中, 与特化物种相互作用的物种是与泛化物种相互作用的物种的子集。
A pattern of interaction in which specialists interact with species that form perfect subsets of the species with which generalists interact.
模块性 Modularity 互作网络中一些物种通过连接会构成模块, 模块内部的物种间连接相对紧密, 而与模块外的物种连接较为松散。
A pattern which occurs when the species form cohesive subgroups (modules), such that species within a module interact more among themselves than with those of other modules.
互作强度的非对称性
Interaction strength asymmetry
网络中发生互作关系的物种之间受影响程度的差异性 $ISA(i,j)=\ |d_{ij}^{P}-d_{ji}^{A}|/\max (d_{ij}^{P},d_{ji}^{A})$
式中, $d_{ij}^{P}$$d_{ji}^{A}$分别表示植物i对动物j的依赖程度和动物j对植物i的依赖性。
Explaining dependence asymmetry across both trophic levels. $ISA(i,j)=\ |d_{ij}^{P}-d_{ji}^{A}|/\max (d_{ij}^{P},d_{ji}^{A})$ $d_{ij}^{P}$and $d_{ji}^{A}$ represent plant i dependency on animal j and animal j dependency on plant i, respectively.