空间泊松模型 Poisson model | 空间点位置完全随机 Complete spatial randomness of points | 单一尺度, 单一导管属性, 随机分布特征 Single scale, single vessel identity, random distribution |
硬核模型 Hardcore model | 相邻点间距低于硬核距离则不能存在 Neighbor point is forbidden at distance smaller than hardcore distance | 单一尺度, 单一导管属性, 均匀分布特征 Single scale, single vessel identity, uniform distribution |
施特劳斯模型 Strauss model | 相邻点间距越小则出现概率越低 Neighbor points have lower probability with smaller distance between them | 单一尺度, 单一导管属性, 聚集分布特征 Single scale, single vessel identity, aggregation distribution |
盖耶饱和模型 Geyer saturation model | 任一点全部分布概率不超过特定值 Probability of each point is restrained at specific threshold value | 单一尺度, 单一导管属性, 聚集分布特征, 受导管密度影响 Single scale, single vessel identity, aggregation distribution, influenced by total vessel density |
多类型硬核模型 MultiHardcore model | 点属性2类以上的硬核模型 Hardcore model with more than two point identities | 单一尺度, 两类以上导管属性(如早、晚材导管, 单、复导管等), 同类导管均匀分布特征 Single scale, more than two vessel identities (e.g., vessel for early- and latewood, single vessel and multiple vessel), uniform distribution for each identity |
多类型施特劳斯模型 MultiStrauss model | 点属性2类以上的施特劳斯模型 Strauss model with more than two point identities | 单一尺度, 两类以上导管属性, 同类导管聚集分布特征 Single scale, more than two vessel identities, aggregation distribution for each identity |
斯特劳斯-硬核模型 Strauss-Hardcore model | 一个硬核模型和一个施特劳斯模型的组合 A combination of a Strauss model and a Hardcore model | 两个尺度, 单一属性的导管, 均匀-聚集分布特征 Two scales, single two vessel identity, uniform-aggregation distribution |
多类型施特劳斯-硬核模型 MultiStrauss-Hardcore model | 点属性2类以上的斯特劳斯-硬核模型 Strauss-Hardcore model with more than two point identities | 两个尺度, 两类以上导管属性, 同类导管不同尺度上呈均匀和聚集分布特征 Two scales, more than two vessel identities, uniform-aggregation distribution |
组合式盖耶模型 Piecewise Geyer model | 组合模型, 可包括多个盖耶饱和子模型、硬核子模型和施特劳斯子模型 A hybrid model including multiple sub-models such as Strauss model, Hardcore model, and Geyer saturation model | 多个尺度, 单一属性的导管, 均匀和聚集分布特征, 受导管总密度影响 More than two scales, single vessel identity, uniform-aggregation distribution, influenced by total vessel density |