森林地上生物量遥感估算研究综述
郝晴, 黄昌

A review of forest aboveground biomass estimation based on remote sensing data
HAO Qing, HUANG Chang
表1 部分常用植被指数及其特点
Table 1 Several popular vegetation indices and their characteristics
植被指数 Vegetation index 计算公式 Calculation formula 特点 Characteristic
归一化植被指数
Normalized differential vegetation index (NDVI)
NDVI = (NIR - Red)/(NIR + Red) 应用广泛、反映植被空间分布与生长状况
It is widely used and reflects the spatial distribution and growth of vegetation
增强型植被指数
Enhanced vegetation index (EVI)
EVI = 2.5 × (NIR - Red)/(NIR + 6Red - 7.5Blue + 1) 可纠正大气和土壤背景的影响, 不易饱和
It can correct the influence of atmospheric and soil background and is not easily saturated
比值植被指数
Ratio vegetation index (RVI)
RVI = NIR/Red 计算简单, 在植被密集区域灵敏度高
It’s easy to calculate and has high sensitivity in densely vegetated areas
差值植被指数
Differential vegetation index (DVI)
DVI = NIR - Red 对土壤背景变化敏感, 易区分土壤和植被
It’s sensitive to soil background changes and easy to distinguish between soil and vegetation
重归一化植被指数
Re-normalized differential vegetation index (RDVI)
RDVI = (NIR – Red)/$\sqrt{(\text{NIR}+\text{Red})}$ 可区分土壤和植被, 也可以反映植被信息
It can distinguish between soil and vegetation and reflect vegetation information
土壤调节植被指数
Soil-adjusted vegetation index (SAVI)
SAVI = 1.5 × (NIR - Red)/(NIR + Red + 0.5) 考虑土壤光学性质, 适用于稀疏植被区域
It can take into account soil optical properties and is suitable for areas of sparse vegetation
修正土壤调节植被指数
Modified soil-adjusted vegetation index (MSAVI)
MSAVI = 1/2 × (2NIR + 1 – $\sqrt{[{{(2\text{NIR}+1)}^{2}}-8\times (\text{NIR}-\text{Red})]}$) 可消除土壤背景
It can remove the soil background
垂直植被指数
Perpendicular vegetation index (PVI)
PVI = (NIR – 0.791Red – 0.043)/$\sqrt{({{0.791}^{2}}+1)}$ 用于地表植被参数的反演
It can be used for inversion of surface vegetation parameters