[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]

三种植物对土壤磷吸收和富集能力的比较

展开
  • 1中国科学院水生植物与流域生态重点实验室, 中国科学院武汉植物园, 武汉 430074
    2中国科学院大学, 北京 100049

# 共同第一作者

收稿日期: 2014-07-07

  录用日期: 2014-11-02

  网络出版日期: 2015-01-22

基金资助

基金项目 国家水体污染控制与治理科技重大专项(2012ZX07104-002)

Comparison of phosphorus uptake and accumulation capacity among three plant species

Expand
  • 1Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
    and 2University of Chinese Academy of Sciences, Beijing 100049, China

# Co-first authors

Received date: 2014-07-07

  Accepted date: 2014-11-02

  Online published: 2015-01-22

摘要

筛选磷富集植物是磷矿废弃地土壤与植被修复的关键。该文以向日葵(Helianthus annuus)、苏丹草(Sorghum sudanense)、南瓜(Cucurbita moschata)为研究对象, 采用盆栽试验, 设置5个磷浓度(0、100、300、500和700 mg·kg-1), 分别在3个不同生长时段(4周、7周、10周)内采样, 对这3种植物的磷吸收和富集能力进行了比较。结果表明: (1)在相同生长时间内, 向日葵、苏丹草、南瓜的地上部磷含量均随磷处理浓度的升高而增大, 最大值分别为9.67 g·kg-1、4.86 g·kg-1、6.32 g·kg-1; 相同浓度下, 向日葵地上部磷含量随着生长时间的延长呈上升趋势, 苏丹草则呈下降趋势, 南瓜无显著变化; (2) 3种植物的地上部磷累积量均在磷处理浓度为700 mg·kg-1时, 生长10周后达到最大值, 分别为217.83 mg·plant-1、93.92 mg·plant-1、135.82 mg·plant-1; (3)各浓度处理下, 向日葵、苏丹草的地上部磷富集系数和转移系数均大于1.00, 南瓜的地上部磷富集系数和转移系数波动较大; 向日葵的富集系数和转移系数最大值分别达11.39和4.09。综合比较可知, 3种植物磷吸收和富集能力的大小顺序为: 向日葵>南瓜>苏丹草。向日葵各项富磷特征基本符合磷富集植物的筛选标准, 可作为磷矿废弃地土壤与植被修复的备选物种。

本文引用格式

吴浩, 卢志军, 黄汉东, 江明喜 . 三种植物对土壤磷吸收和富集能力的比较[J]. 植物生态学报, 2015 , 39(1) : 63 -71 . DOI: 10.17521/cjpe.2015.0007

Abstract

Aims

Phosphorus mining wasteland is a very special kind of degraded ecosystems, where vegetation and landscape are severely damaged. Our objective was to select plants suitable for phytoremediation of phosphorus-rich soils in mining wasteland.

<i>Methods</i>

We conducted pot experiments to investigate phosphorus uptake and accumulation capacity in Helianthus annuus, Sorghum sudanense and Cucurbita moschata grown in soils with different levels of phosphorus supply. The phosphorus concentrations applied are 0, 100, 300, 500 and 700 mg·kg-1. Phosphorus concentration, phosphorus accumulation, bioaccumulation and translation coefficient of the plants were measured for three growth periods (4 weeks, 7 weeks, 10 weeks), respectively.

<i>Important findings </i>

Over the same growth period, phosphorus concentration in shoots of the three plant species increased with increasing phosphorus supplies, with the maximum of 9.67 g·kg-1 in H. annuus, 4.86 g·kg-1 in S. sudanense, and 6.32 g·kg-1 in C. moschata. Under the same phosphorus treatments, phosphorus concentration significantly increased with growth time in shoots of H. annuus, decreased in shoots of S. sudanense, and did not significantly change in shoots of C. moschata. The aboveground total phosphorus accumulation in the three plant species all reached highest values when grown for 10 weeks in soils supplied with 700 mg·kg-1 phosphorus, amounting to 217.83 mg·plant-1 in H. annuus, 93.92 mg·plant-1 in S. sudanense, 135.82 mg·plant-1 in C. moschata, respectively. The bioaccumulation and translation coefficients in both H. annuus and S. sudanense exceeded 1.00 under each treatment. The peak values of the two coefficients were 11.39 and 4.09 for H. annuus. In conclusion, the phosphorus uptake and accumulation capacity of the tested plant species were in the order of H. annuus > C. moschata > S. sudanense, and H. annuus can be a possible candidate for phytoremediation of phosphorus mining wastelands.

[an error occurred while processing this directive]

参考文献

1 Baker AJM, Brooks RR, Pease AJ, Malaisse F (1983). Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant and Soil, 73, 377-385.
2 Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing.
2 (in Chinese) [鲍士旦 (2000). 土壤农化分析. 第3版. 中国农业出版社, 北京.]
3 Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979). Hyperaccumulation of nickel by Alyssum linnaeus (Cruciferae). Proceedings of the Royal Society of London. Series B. Biological Sciences, 203, 387-403.
4 Fu DG, He F, Guo Z, Yan K, Wu XN, Duan CQ (2013). Assessment of ecological restoration function of the Coriaria nepalensis-Erianthus rufipilus community in the phosphorus-enriched degraded mountain area in the Lake Dianchi Watershed, Southwestern China. Chinese Journal of Plant Ecology, 37, 326-334.
4 (in Chinese with English abstract) [付登高, 何锋, 郭震, 阎凯, 吴晓妮, 段昌群 (2013). 滇池流域富磷区退化山地马桑-蔗茅植物群落的生态修复效能评价.植物生态学报, 37, 326-334.]
5 Guo P, Liu C, Zhang HB, Song XJ, Bao GZ (2007). Studies on enrichment and tolerance ability to Pb-Cu of sunflower seedlings. Journal of Soil and Water Conservation, 21(6), 92-95.
5 (in Chinese with English abstract) [郭平, 刘畅, 张海博, 宋晓娟, 包国章 (2007). 向日葵幼苗对Pb-Cu富集能力与耐受性研究.水土保持学报, 21(6), 92-95.]
6 Guo YL, Tai PD, Han YP, Feng Q, Li PJ (2009). Effects of cadmium on the growth and physiological characteristics of sunflower seedlings. Chinese Journal of Environmental Engineering, 3, 2291-2996.
6 (in Chinese with English abstract) [郭艳丽, 台培东, 韩艳萍, 冯倩, 李培军 (2009). 镉胁迫对向日葵幼苗生长和生理特性的影响.环境工程学报, 3, 2291-2996.]
7 Guo YR, Chen FQ, Xi GW, Zeng X (2009). Eco-physiological response of Ficus tikoua to different soil phosphorous content. Ecology and Environmental Sciences, 18, 1908-1913.
7 (in Chinese with English abstract) [郭彦荣, 陈芳清, 郄光武, 曾旭 (2009). 铺地榕对不同土壤磷营养水平的生理生态学响应.生态环境学报, 18, 1908-1913.]
8 Han SH, Huang SF, Tang H, Wang M, Wu J (2012). A comparative study on the performance of 3 plants for remediation of cadmium contaminated farmland soil. Environmental Pollution & Control, 34(12), 22-25.
8 (in Chinese with English abstract) [韩少华, 黄沈发, 唐浩, 王敏, 吴健 (2012). 3种植物对Cd污染农田土壤的修复效果比较试验研究.环境污染与防治, 34(12), 22-25.]
9 Huang X, Li TX, Zhang XZ, Zheng ZC, Yu HY (2012). Growth, P accumulation, and physiological characteristics of two ecotypes of Polygonum hydropiper as affected by excess P supply. Journal of Plant Nutrition and Soil Science, 175, 293-302.
10 Lan CY, Shu WS, Sun QY, Chen CD (1993). Mining land reclamation. In: Chen CD ed. Sustainable Development and Ecology. China Science and Technology Press, Beijing. 132-138.
10 (in Chinese) [蓝崇钰, 束文圣, 孙庆业, 陈昌笃 (1993). 采矿地的复垦. 见: 陈昌笃编. 持续发展与生态学. 中国科学技术出版社, 北京. 132-138.]
11 Liu JX (2009). Phosphate rock resource characteristic and suggestion on its exploitation and utilization. Industrial Minerals & Processing, (3), 36-39.
11 (in Chinese with English abstract) [刘建雄 (2009). 我国磷矿资源特点及开发利用建议.化工矿物与加工, (3), 36-39.]
12 Liu S, Li TX, Ji L, Zhang SJ (2013). Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments. Acta Prataculturae Sinica, 22, 211-227.
12 (in Chinese with English abstract) [刘霜, 李廷轩, 戢林, 张树金 (2013). 不同磷处理下两种生态型粗齿冷水花的富磷特征及根系形态差异.草业学报, 22, 211-217.]
13 Li YZ, Luo J, Zhang YM, Liu Q, Guo DD (2012). Plant resources investigation and hyperaccumulator screening in Xiangtan manganese mine area of Hunan Province, central-south China. Chinese Journal of Ecology, 31, 16-22.
13 (in Chinese with English abstract) [李有志, 罗佳, 张灿明, 刘庆, 郭丹丹 (2012). 湘潭锰矿区植物资源调查及超富集植物筛选.生态学杂志, 31, 16-22.]
14 Monni S, Salemaa M, White C, Tuittila E, Huopalainen M (2000). Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland. Environmental Pollution, 109, 211-219.
15 Novak JM, Chan ASK (2002). Development of P hyperaccumulator plant strategies to remediate soils with excess P concentrations. Critical Reviews in Plant Sciences, 21, 493-509.
16 Padmanabhan P, Starnes DL, Sahi SV (2013). Differential responses of Duo grass (Lolium × Festuca), a phosphorus hyperaccumulator to high phosphorus and poultry manure treatments. African Journal of Biotechnology, 12, 3191-3195.
17 Pant HK, Mislevy P, Rechcigl JE (2004). Effects of phosphorus and potassium on forage nutritive value and quantity: Environmental implications. Agronomy Journal, 96, 1299-1305.
18 Ruso J, Zapata J, Hernandez M, Ojeda MA, Benlloch M, Prats-Perez E, Tena M, Lopez R, Jorrin JV (2001). Toxic metals accumulation and total soluble phenolics in sunflower and tobacco plants. Minerva Biotechologica, 13, 93-95.
19 Sharma NC, Sahi SV (2005). Characterization of phosphate accumulation in Lolium multiflorum for remediation of phosphorus-enriched soils. Environmental Science & Technology, 39, 5475-5480.
20 Sharma NC, Starnes DL, Sahi SV (2007). Phytoextraction of excess soil phosphorus. Environmental Pollution, 146, 120-127.
21 Sharpley AN, McDowell RW, Kleinman PJA (2001). Phosphorus loss from land to water: integrating agricultural and environmental management. Plant and Soil, 237, 287-307.
22 Sun SY, Chen JZ (1985). A preliminary study of planting density of oil sunflower. Oil Crops of China, (3), 45-47.
22 (in Chinese with English abstract) [孙书蕴, 陈建忠 (1985). 油用向日葵种植密度的初步研究. 中国油料, (3), 45-47.]
23 Wei CY, Chen TB (2001). Hyperaccumulators and phytoremediation of heavy metal contaminated soil: A review of studies in China and abroad. Acta Ecologica Sinica, 21, 1196-1203.
23 (in Chinese with English abstract) [韦朝阳, 陈同斌 (2001). 重金属超富集植物及植物修复技术研究进展.生态学报, 21, 1196-1203.]
24 Wu DL (1992). Exploitation and utilization of sunflower in China. Journal of Shanxi Agricultural Sciences, (10), 14-15.
24 (in Chinese with English abstract) [武殿林 (1992). 中国向日葵带及其开发之探讨.山西农业科学, (10), 14-15.]
25 Xiao GL, Li TX, Zhang XZ, Yu HY, Huang HG, Gupta DK (2009). Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area. Journal of Hazardous Materials, 171, 542-550.
26 Xu L, Shen RF, Liang LZ, Dong XY (2012). Screening of high phosphorus accumulation varieties of Cucumis sativus. Jiangsu Agricultural Sciences, 40(10), 137-139.
26 (in Chinese with English abstract) [徐蕾, 沈仁芳, 梁林洲, 董晓英 (2012). 磷高累积黄瓜品种筛选.江苏农业科学, 40(10), 137-139.]
27 Ye DH, Li TX, Zhang XZ, Zheng ZC, Yu HY (2014). Effect of high phosphate supply on P accumulation characteristics of mining ecotype of Polygonum hydropiper. Journal of Plant Nutrition and Fertilizer, 20, 186-194.
27 (in Chinese with English abstract) [叶代桦, 李廷轩, 张锡洲, 郑子成, 余海英 (2014). 高磷对矿山生态型水蓼磷富集特性的影响.植物营养与肥料学报, 20, 186-194.]
28 Ye WL, Xu XY, Chen Z, Dong XL, Wang W, Fang S (2008). Study on adaptation of Sorghum sudanense (Piper) Stapf to copper tailing. Research of Environmental Science, 21(6), 193-196.
28 (in Chinese with English abstract) [叶文玲, 徐晓燕, 陈增, 董晓玲, 王韡, 方胜 (2008). 苏丹草对铜尾矿的适应性研究.环境科学研究, 21(6), 193-196.]
文章导航

/

[an error occurred while processing this directive]