[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

内蒙古半干旱草原土壤水分对降水格局变化的响应

展开
  • 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2中国科学院大学生命科学学院, 北京 100049

收稿日期: 2015-05-03

  录用日期: 2015-05-29

  网络出版日期: 2016-07-07

基金资助

国家自然科学基金面上项目(31170453)和中国科学院战略性先导科技专项-应对气候变化的碳收支认证及相关问题(XDA05050402)

Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China

Expand
  • 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    and
    2College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-05-03

  Accepted date: 2015-05-29

  Online published: 2016-07-07

摘要

在全球气候变化背景下, 未来我国北方半干旱地区的降水格局将呈现出季节与年际间降水波动增强和极端降水事件增加的趋势。水分是半干旱草原的主要限制因子, 降水格局变化导致的土壤水分状况的改变必然对生态系统的结构和功能产生显著的影响。该研究选取内蒙古多伦和锡林浩特两个典型半干旱草原群落, 通过分析2006-2013年的降水和多层次土壤(0-10 cm, 10 cm, 20 cm, 30 cm和50 cm)含水量连续观测数据, 研究降水格局变化对土壤水分状况及其垂直分布的影响, 特别是土壤水分对降水事件的脉冲响应过程。结果表明: 两个站点的土壤含水量均呈现显著的季节及年际间波动, 其中土壤表层 0-10 cm水分波动更剧烈。锡林浩特50 cm处土壤含水量波动较大, 主要由于春季融雪的影响。年际间多伦和锡林浩特生长季土壤表层0-10 cm土壤含水量与降水量存在显著的正相关关系, 下层(10-50 cm)土壤含水量与降水量相关性不显著。研究发现小至2 mm的降水事件就能够引起两个站点表层0-10 cm土壤含水量的升高, 即该地区有效降水为日降水量> 2 mm。表层0-10 cm土壤含水量对独立降水事件的脉冲响应可通过指数方程很好地拟合。降水事件的大小决定了降水后表层0-10 cm土壤含水量的最大增量和持续时间, 同时这个脉冲响应过程还受到降水前土壤含水量的影响, 但该过程中并未发现植被因子(叶面积指数)的显著影响。降水后水分下渗深度及该深度的土壤含水量增量主要由降水事件的大小主导, 同时受到降水前土壤含水量的影响。在多伦和锡林浩特, 平均每增加1 mm降水, 下渗深度分别增加1.06和0.79 cm。由此作者认为, 在内蒙古半干旱草原, 降水事件大小和降水前土壤干湿状况是影响土壤水分对降水响应的主要因素, 而植被因子的影响较小。

本文引用格式

陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹 . 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016 , 40(7) : 658 -668 . DOI: 10.17521/cjpe.2015.0155

Abstract

Aims Under global climate change, precipitation patterns were predicted to change with larger seasonal and annual variations and more extreme events in the semiarid regions of northern China. Water availability is one of the key limited factors in semiarid grasslands. Changes in precipitation patterns will inevitably affect ecosystem structure and function through soil water condition. Our objective was to investigate the response of soil water content to changes of precipitation pattern, especially its pulse response to precipitation events.
Methods Two semiarid steppe sites (Duolun and Xilinhot) in Nei Mongol were chosen and meteorological stations were installed to monitor precipitation and soil volumetric water content (VWC) at five soil depths (0-10 cm, 10 cm, 20 cm, 30 cm, 50 cm) from 2006 to 2013. The pulse response of VWC at 0-10 cm to an individual precipitation event was simulated by an exponential equation.
Important findings Significant seasonal and inter-annual variations of VWC were observed at the Duolun and Xilinhot sites. VWC at 50 cm soil layer in Xilinhot showed an obvious increase during the early spring due to the influences of snow melting. Mean surface (0-10 cm soil layer) VWC was significantly correlated with annual precipitation across eight years, but VWC in the deeper soil layers (10-50 cm) were not impacted by precipitation. We also found that the precipitation event larger than 2 mm could induce a significant increase in surface (0-10 cm soil layer) VWC, and could be regarded as an effective precipitation in this region. The maximum increment of surface VWC after the events and lasting time (Tlasting) were determined by the event size, while showed negatively linear correlations with the initial soil water content before the events. Vegetation development (leaf area index) did not show significant impacts on the responses of surface soil moisture to precipitation pulses. The infiltration depth of rain water was also determined by rain size and pre-event soil moisture. In average, soil water can infiltrate 1.06 cm and 0.79 cm deeper in Duolun and Xilinhot with 1 mm more precipitation, respectively. Therefore, our results suggest that the event size and pre-event soil moisture were the most important factors affecting response patterns of soil moisture to rain events in semiarid ecosystems.

[an error occurred while processing this directive]

参考文献

1 Adams JM, Faure H, Fauredenard L, Mcglade JM, Woodward FI (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present.Nature, 348, 711-714.
2 Blair JM (1997). Fire, N availability, and plant response in grasslands: A test of the transient maxima hypothesis.Ecology, 78, 2359-2368.
3 Burba GG, Verma SB (2005). Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems.Agricultural and Forest Meteorology, 135, 190-201.
4 Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biology, 15, 2450-2461.
5 Chen ZZ, Wang SP (2000). Typical Steppe Ecosystems of China. Science Press, Beijing. (in Chinese)[陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.]
6 Coupland RT (1950). Ecology of mixed prairie in Canada.Ecological Monograph, 20, 271-315.
7 Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074.
8 Falster DS, Warton DI, Wright IJ (. Cited: 11 Mar. 2006.
9 Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function.Biogeosciences, 8, 3053-3068.
10 Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland Eirik, Zhai PM (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change.Climatic Change, 42, 243-283.
11 Hao YB (2006). Characteristics of Net Ecosystem Exchange of Carbon Dioxide and Their Driving Factors over a Fenced Leymus chinensis Steppe in Inner Mongolia. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 115-117. (in Chinese with English abstract)[郝彦宾 (2006). 内蒙古羊草草原碳通量观测及其驱动机制分析. 博士学位论文, 中国科学院植物研究所, 北京. 115-117.]
12 Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem.Global Change Biology, 11, 322-334.
13 Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009). Contingent productivity responses to more extreme rainfall regimes across a grassland biome.Global Change Biology, 15, 2894-2904.
14 Heisler-White JL, Knapp AK, Kelly EF (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland.Oecologia, 158, 129-140.
15 Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia, 141, 254-268.
16 IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
17 Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reich- stein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience, 58, 811-821.
18 Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland.Science, 298, 2202-2205.
19 Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production.Science, 291, 481-484.
20 Liu XZ, Wan SQ, Su B, Hui DF, Luo YQ (2002). Response of soil CO2 ef?ux to water manipulation in a tallgrass prairie ecosystem.Plant and Soil, 240, 213-223.
21 Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA.Oecologia, 141, 269-281.
22 Miao HX (2008). Effects of Cultivation and Grazing on Evapotranspiration of Steppe Ecosystems in Inner Mongolia, China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 62-74. (in Chinese with English abstract)[苗海霞 (2008). 开垦和放牧对内蒙古半干旱草原蒸发散的影响. 博士学位论文, 中国科学院植物研究所, 北京. 62-74.]
23 Miller PC, Poole DK, Miller PM (1983). The Influence of annual precipitation, topography, and vegetative cover on soil moisture and summer drought in Southern California.Oecologia, 56, 385-391.
24 Ni J, Zhang XS (2000). Climate variability, ecological gradient and the Northeast China Transect (NECT).Journal of Arid Environments, 46, 313-325.
25 Oki T, Kanae S (2006). Global hydrological cycles and world water resources.Science, 313, 1068-1072.
26 Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006). Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland.New Phytologist, 170, 849-860.
27 Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004). Water conservation in Artemisia tridentata through redistribution of precipitation.Oecologia, 141, 335-345.
28 Sala OE, Lauenroth WK (1982). Small rainfall events: An eco- logical role in semiarid regions.Oecologia, 53, 301-304.
29 Schenk HJ, Jackson RB (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics.Geoderma, 126, 129-140.
30 Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.Oecologia, 141, 211-220.
31 Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17, 1505-1515.
32 Weltzin JF, Tissue DT (2003). Resource pulses in arid environments-patterns of rain, patterns of life.New Phytologist, 157, 171-173.
33 Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014). Future changes to the intensity and frequency of short- duration extreme rainfall.Reviews of Geophysics, 52, 522-555.
34 Wilcox KR, von Fischer JC, Muscha JM, Petersen MK, Knapp AK (2015). Contrasting above- and belowground sensitivity of three great plains grasslands to altered rainfall regimes.Global Change Biology, 21, 335-344.
35 Williams CA, Hanan N, Scholes RJ, Kutsch W (2009). Com- plexity in water and carbon dioxide fluxes following rain pulses in an African savanna.Oecologia, 161, 469-480.
36 Yahdjian L, Sala OE (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe.Ecology, 87, 952-962.
37 Yaseef NR, Yakir D, Rotenberg E, Schiller G, Cohen S (2010). Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes.Ecohydrology, 3, 143-154.
文章导航

/

[an error occurred while processing this directive]