[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

塔里木河中游绿洲盐漠带典型盐生植物光谱特征

展开
  • 1新疆大学资源与环境科学学院, 乌鲁木齐 830046
    2新疆大学绿洲生态教育部重点实验室, 乌鲁木齐 830046
    3中国科学院新疆生态与地理研究所, 乌鲁木齐 830011
    4新疆策勒荒漠草地生态系统国家野外科学观测研究站, 新疆策勒 848300
*E-mail: tash@xju.edu.cn
第一联系人:

* E-mail: zhangfei3s@yahoo.com.cn

网络出版日期: 2012-07-10

Spectral reflectance characteristics of typical halophytes in the oasis salinization-desert zone on middle reaches of Tarim River, China

Expand
  • 1College of Resources and Environment Science, Xinjiang University, ürümqi 830046, China
    2Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, ürümqi 830046, China
    3Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, ürümqi 830011, China; and 4Cele National Station of Observation & Research for Desert-Grassland Ecosystem in Xinjiang, Cele, Xinjiang 848300, China
    4Cele National Station of Observation & Research for Desert-Grassland Ecosystem in Xinjiang, Cele, Xinjiang 848300, China

Online published: 2012-07-10

摘要

盐生植物作为干旱区绿洲重要的生命支持系统, 对于维持绿洲生态系统平衡起着核心的作用。很多学者对此展开了大量研究, 但是对盐生植物的光谱特征研究较少, 因此, 该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象, 利用FieldSpec Pro FR便携式地物波谱仪, 2010年10月通过对盐穗木(Halostachys caspica)、盐节木(Halocnemum strobilaceum)、骆驼刺(Alhagi sparsifolia)、白刺(Nitrarria sibirica)、柽柳(Tamarix ramosissima)、花花柴(Karelinia caspia)及芦苇(Phragmites australis)野外光谱数据采集和处理, 获得了这7种盐生植物的高光谱数据, 然后采用光谱学分析方法分析其特征变化, 结果表明: (1)采用Percentile Filter平滑方法进行光谱噪声去除, 有很好的去除噪音效果。(2)对3种类型盐生植物样本的原始光谱曲线提取光谱吸收特征参数, 结果发现稀盐盐生植物、泌盐盐生植物、拒盐盐生植物的波谷波长位置接近, 说明盐生植物的吸收波段特征有一定的相似性。(3)对盐生植物光谱反射曲线进行归一化处理, 发现在消除土壤等背景影响、突出目标及消除同物异谱现象上具有很好的效果, 能够提高盐生植被的识别精度。(4)应用二阶导数的方法得到盐生植物识别的9个最佳波段: 510、550、690、730、950、1150、1210、1290和1310 nm。研究成果不仅可以为盐漠带植物的高光谱遥感数据处理提供一定的科学依据, 而且可以为盐漠带盐生植物的遥感识别和分类提供一定的参考。

本文引用格式

张飞, 塔西甫拉提·特依拜, 丁建丽, 买买提·沙吾提, 桂东伟 . 塔里木河中游绿洲盐漠带典型盐生植物光谱特征[J]. 植物生态学报, 2012 , 36(7) : 607 -617 . DOI: 10.3724/SP.J.1258.2012.00607

Abstract

Aims As one of the main components of terrestrial ecosystems, halophytes play a key role in maintaining arid zone ecosystem balance. Remote sensing has potential for monitoring halophytes in large areas. However, few studies on the spectral properties of halophytes are available. The spectral features of halophytes on the ground provide an important basis for remote sensing applications.

Methods This study used the FieldSpec Pro FR portable spectroscope to record ground reflectance of halophytes, using typical halophytes in the salinization-desert zone of a delta oasis in Weigan-Kuqa River as an example. We first analyzed the data noise characteristic of the spectrum. The noise was removed using the Percentile Filter method. We employed differential spectrum technology to reduce the influence of environmental background. Second, we extracted parameters of spectral absorption features for typical halophytes: Halostachys caspica, Halocnemum strobilaceum, Alhagi sparsifolia, Nitrarria sibirica, Tamarix ramosissima, Karelinia caspia and Phragmites australis. Third, we processed spectral reflectance curves of halophytes using a normalization method.

Important findings The wave troughs/wave length positions of euhalophyte, secretohalophyte and pseudohalophy are very similar, indicating that halophytes have similar absorption band characteristics. Elimination of the elements of noises and deflections caused by different scanning conditions such as soil background improved the recognition accuracy of halophytes. We ultimately identified nine optimal spectral bands, i.e., 510, 550, 690, 730, 950, 1150, 1210, 1290 and 1310 nm, that appeared to contain majority of the salinization-desert zone information of the multispectral signatures. The nine bands can be used to differentiate salinization-desert zone halophytes types. The results not only provide a scientific basis for hyperspectral remote sensing image processing, but also supply references for the identification and classification of halophytes using remote sensing technology.

参考文献

[1] Carter GA (1998). Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment, 63, 61-72.
[2] Cheng WM (程维明), Zhou CH (周成虎), Li JX (李建新) (2001). Evolution of Manas Lake landscape in Xin- jiang and its eco-environmental effect. Quaternary Sciences (第四纪研究), 21, 560-565. (in Chinese with English abstract)
[3] Chen ZG (陈志刚), Shu J (束炯) (2008). Empirical mode decomposition on removing spectral noise in hyperspectral image. Journal of Infrared and Millimeter Waves (红外与毫米波学报), 27, 378-382. (in Chinese with English abstract)
[4] Cochrane MA (2000). Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote Sensing, 21, 2075-2087.
[5] Demetriades-Shah TH, Steven MD, Clark JA (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33, 55-64.
[6] Du HQ (杜华强) (2002). A study of Hyperspectral Remote Sensing Data Preprocessing and Spectral Rebuilding in Desertification Areas. (荒漠化地区高光谱遥感数据预处理及地物光谱重建的研究) Master degree dissertation, Northeast Forestry University, Harbin. (in Chinese with English abstract)
[7] Du HQ (杜华强), Jin W (金伟), Ge HL (葛宏立), Fan WY (范文义), Xu XJ (徐小军) (2009). Using fractal dimensions of hyperspectral curves to analyze the healthy status of vegetation. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 29, 2136-2140. (in Chinese with English abstract)
[8] Han DL (韩德麟) (1999). Elementary study of oasis constancy. Journal of Ningxia University (Natural Science Edition) 宁夏大学学报(自然科学版)), 20(2), 27-31. (in Chi�se with English abstract)
[9] He FL (何芳兰), Li ZY (李治元), Zhao M (赵明), Yu QS (尉秋实), Guo SJ (郭树江), Wang DZ (王多泽) (2010). Natural vegetation succession and soil water change in fallow salinization cropland in Minqin oasis, Gansu Province. Journal of Desert Research (中国沙漠), 30, 1374-1380. (in Chinese with English abstract)
[10] Lin WP (林文鹏), Li HZ (李厚增), Huang JF (黄敬峰), Liu DY (刘冬燕), Zong W (宗玮), Hu XM (胡小猛) (2010). Analysis on urban vegetations reflectance characteristics in Shanghai. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 30, 3111-3114. (in Chinese with English abstract)
[11] Liu K (刘克), Zhao WJ (赵文吉), Guo XY (郭逍宇), Hu DY (胡德勇), Gong ZN (宫兆宁), Long J (龙娟) (2010). Spectral bands of typical wetland vegetation in the Wild Duck Lake. Acta Ecologica Sinica (生态学报), 30, 5853-5861. (in Chinese with English abstract)
[12] Palacios-Orueta A, Ustin SL (1998). Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis. Remote Sensing of Environment, 65, 170-183.
[13] Su HJ (苏红军), Du PJ (杜培军), Sheng YH (盛业华) (2008). Study on feature extraction and experiment of hyperspectral data. Application Research of Computers (计算机应用研究), 25, 390-394. (in Chinese with English abstract)
[14] Su LH (苏理宏), Li XW (李小文), Wang JD (王锦地), Tang SH (唐世浩) (2003). Some problems in constructing the ground object spectral knowledge base and its services. Advance in Earth Sciences (地球科学进展), 18, 185-191. (in Chinese with English abstract)
[15] Thenkabail PS, Enclona EA, Ashton MS, Legg C, de Dieu MJ (2004). Hyperion, IKONOS, ALI and ETM+ sensors in the study of African rainforests . Remote Sensing of Environment, 90, 23-43.
[16] Thenkabail PS, Smith RB, Pauw ED (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158-182.
[17] Tian YC (田亦陈), Jia K (贾坤), Wu BF (吴炳方), Li QZ (李强子) (2010). Study on spectral reflectance characteristics of hemp canopies. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 30, 3334-3337. (in Chinese with English abstract)
[18] Wang JN (王晋年), Zhang B (张兵), Liu JG (刘建贵), Tong QX (童庆禧), Zheng LF (郑兰芬) (1999). Hyperspectral data mining—Toward target recognition and classification. Journal of Image and Graphics (中国图象图形学报), 4, 957-964. (in Chinese with English abstract)
[19] Wang JN (王晋年), Zheng LF (郑兰芬), Tong QX (童庆禧) (1996). The spectral absorption identification model and mineral mapping by imaging spectrometer data. Remote Sensing of Environment (环境遥感), 11, 20-31. (in Chinese with English abstract)
[20] Wang L (王雷), Zhang DY (张道远), Huang ZY (黄振英), Tian CY (田长彦) (2008). Floristic analysis of halophytes in Xinjiang. Scientia Silvae Sinicae (林业科学), 44(7), 36-42. (in Chinese with English abstract)
[21] Xie H (谢辉), Yu ET (于恩涛), Kong QY (孔琼英), Lü GH (吕光辉) (2009). Study on the halophytes in Aibi Lake Wetland Nature Reserve. Journal of Arid Land Resources and Environment (干旱区资源与环境), 23, 176-180. (in Chinese with English abstract)
[22] Xu HL (徐海量), Song YD (宋郁东), Wang Q (王强), Mti A (艾合买提) (2004). The effect of groundwater level on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China. Acta Phytoecologica Sinica (植物生态学报), 28, 400-405. (in Chinese with English abstract)
[23] Xu WD (许卫东), Yin Q (尹球), Kuang DB (匡定波) (2005). Comparison of different spectral match model. Journal of Infrared and Millimeter Waves (红外与毫米波学报), 24, 296-300. (in Chinese with English abstract)
[24] Yang XD (杨晓东), Lü GH (吕光辉), Wang YS (王银山), Zhang XM (张雪梅) (2010). Water use efficiency of halophytes in Ebinur Lake Wetland Nature Reserve of Xinjiang. Chinese Journal of Ecology (生态学杂志), 29, 2341-2346. (in Chinese with English abstract)
[25] Zhang F (张飞) (2011). Study on the Spectral Characteristics of Salinized Soils with Ground Objects in the Typical Oasis of Arid Area. (干旱区典型绿洲盐渍地地物光谱特征研究) PhD dissertation, Xinjiang University, ürümqi. (in Chinese with English abstract)
[26] Zhang F (张飞), Tashpolat T (塔西甫拉提·特依拜), Ding JL (丁建丽), He QS (何祺胜) (2008). Spectral properties analysis of salinity soils with ground objects in the north of Tarim Basin. Journal of Northeast Forestry University (东北林业大学学报), 36(6), 37-42. (in Chinese with English abstract)
[27] Zheng LF (郑兰芬), Wang JN (王晋年) (1992). A study on imaging spectrometry and its extraction of image spectral information. Remote Sensing of Environment (环境遥感), 7, 49-58. (in Chinese with English abstract)
文章导航

/

005-264X/bottom_cn.htm"-->