植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 607-617.DOI: 10.3724/SP.J.1258.2012.00607
张飞1,2,*(), 塔西甫拉提·特依拜1,2*,*, 丁建丽1,2, 买买提·沙吾提1,2, 桂东伟3,4
发布日期:
2012-07-10
通讯作者:
张飞,塔西甫拉提·特依拜
作者简介:
*E-mail: tash@xju.edu.cn* E-mail: zhangfei3s@yahoo.com.cn
ZHANG Fei1,2,*(), TASHPOLAT · Tiyip1,2*,*, DING Jian-Li1,2, MAMAT · Sawut1,2, GUI Dong-Wei3,4
Published:
2012-07-10
Contact:
ZHANG Fei,TASHPOLAT · Tiyip
摘要:
盐生植物作为干旱区绿洲重要的生命支持系统, 对于维持绿洲生态系统平衡起着核心的作用。很多学者对此展开了大量研究, 但是对盐生植物的光谱特征研究较少, 因此, 该文以渭干河-库车河三角洲绿洲盐漠带典型盐生植物为研究对象, 利用FieldSpec Pro FR便携式地物波谱仪, 2010年10月通过对盐穗木(Halostachys caspica)、盐节木(Halocnemum strobilaceum)、骆驼刺(Alhagi sparsifolia)、白刺(Nitrarria sibirica)、柽柳(Tamarix ramosissima)、花花柴(Karelinia caspia)及芦苇(Phragmites australis)野外光谱数据采集和处理, 获得了这7种盐生植物的高光谱数据, 然后采用光谱学分析方法分析其特征变化, 结果表明: (1)采用Percentile Filter平滑方法进行光谱噪声去除, 有很好的去除噪音效果。(2)对3种类型盐生植物样本的原始光谱曲线提取光谱吸收特征参数, 结果发现稀盐盐生植物、泌盐盐生植物、拒盐盐生植物的波谷波长位置接近, 说明盐生植物的吸收波段特征有一定的相似性。(3)对盐生植物光谱反射曲线进行归一化处理, 发现在消除土壤等背景影响、突出目标及消除同物异谱现象上具有很好的效果, 能够提高盐生植被的识别精度。(4)应用二阶导数的方法得到盐生植物识别的9个最佳波段: 510、550、690、730、950、1150、1210、1290和1310 nm。研究成果不仅可以为盐漠带植物的高光谱遥感数据处理提供一定的科学依据, 而且可以为盐漠带盐生植物的遥感识别和分类提供一定的参考。
张飞, 塔西甫拉提·特依拜, 丁建丽, 买买提·沙吾提, 桂东伟. 塔里木河中游绿洲盐漠带典型盐生植物光谱特征. 植物生态学报, 2012, 36(7): 607-617. DOI: 10.3724/SP.J.1258.2012.00607
ZHANG Fei, TASHPOLAT · Tiyip, DING Jian-Li, MAMAT · Sawut, GUI Dong-Wei. Spectral reflectance characteristics of typical halophytes in the oasis salinization-desert zone on middle reaches of Tarim River, China. Chinese Journal of Plant Ecology, 2012, 36(7): 607-617. DOI: 10.3724/SP.J.1258.2012.00607
植物名称 Plant name | 盐生植物类型 Halophyte type | 植物生境 Plant habitat | 平均高度 Average height (m) | 生长型 Growth form | 光谱数 Spectra number |
---|---|---|---|---|---|
柽柳 Tamarix ramosissima | 泌盐盐生植物 Secretohalophyte | 中度盐渍地, 重度盐渍地 Moderate and severe saline land | 1.8 | 灌丛 Shrub | 3 |
盐节木 Halocnemum strobilaceum | 稀盐盐生植物 Euhalophyte | 重度盐渍地 Severe saline land | 1.2 | 小灌木 Undershrub | 3 |
花花柴 Karelinia caspia | 拒盐盐生植物 Pseudohalophy | 轻度盐渍地, 中度盐渍地 Slight and moderate saline land | 0.7 | 草本 Herb | 3 |
骆驼刺 Alhagi sparsifolia | 拒盐盐生植物 Pseudohalophy | 轻度盐渍地, 中度盐渍地 Slight and moderate saline land | 0.8 | 草本 Herb | 3 |
白刺 Nitrarria sibirica | 稀盐盐生植物 Euhalophyte | 中度盐渍地 Moderate saline land | 0.9 | 灌丛 Shrub | 3 |
芦苇 Phragmites australis | 拒盐盐生植物 Pseudohalophy | 轻度盐渍地 Slight saline land | 1.5 | 草本 Herb | 3 |
盐穗木 Halostachys caspica | 稀盐盐生植物 Euhalophyte | 重度盐渍地 Severe saline land | 0.8 | 半灌木 Subshrub | 3 |
表1 盐生植物类型及光谱数列表
Table 1 Halophytes type and spectra number
植物名称 Plant name | 盐生植物类型 Halophyte type | 植物生境 Plant habitat | 平均高度 Average height (m) | 生长型 Growth form | 光谱数 Spectra number |
---|---|---|---|---|---|
柽柳 Tamarix ramosissima | 泌盐盐生植物 Secretohalophyte | 中度盐渍地, 重度盐渍地 Moderate and severe saline land | 1.8 | 灌丛 Shrub | 3 |
盐节木 Halocnemum strobilaceum | 稀盐盐生植物 Euhalophyte | 重度盐渍地 Severe saline land | 1.2 | 小灌木 Undershrub | 3 |
花花柴 Karelinia caspia | 拒盐盐生植物 Pseudohalophy | 轻度盐渍地, 中度盐渍地 Slight and moderate saline land | 0.7 | 草本 Herb | 3 |
骆驼刺 Alhagi sparsifolia | 拒盐盐生植物 Pseudohalophy | 轻度盐渍地, 中度盐渍地 Slight and moderate saline land | 0.8 | 草本 Herb | 3 |
白刺 Nitrarria sibirica | 稀盐盐生植物 Euhalophyte | 中度盐渍地 Moderate saline land | 0.9 | 灌丛 Shrub | 3 |
芦苇 Phragmites australis | 拒盐盐生植物 Pseudohalophy | 轻度盐渍地 Slight saline land | 1.5 | 草本 Herb | 3 |
盐穗木 Halostachys caspica | 稀盐盐生植物 Euhalophyte | 重度盐渍地 Severe saline land | 0.8 | 半灌木 Subshrub | 3 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
---|---|---|---|---|---|---|---|---|
1 | 674 nm | 0.034 | 167 | 0.478 | 100.736 | 0.003 898 | 0.551 | -3 174.500 |
2 | 676 nm | 0.093 | 200 | 0.460 | 117.948 | 0.003 090 | 0.415 | -1 320.320 |
3 | 676 nm | 0.055 | 200 | 0.532 | 121.460 | 0.002 890 | 0.405 | -2 087.450 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 974 nm | 0.756 | 155 | 0.028 | 3.376 | -0.000 155 | 0.639 | 5.934 |
2 | 976 nm | 0.680 | 148 | 0.062 | 6.186 | -0.000 034 | 0.622 | 2.171 |
3 | 974 nm | 0.688 | 143 | 0.053 | 6.261 | -0.000 042 | 0.594 | 2.331 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 1 194 nm | 0.746 | 159 | 0.055 | 9.535 | -0.000 541 | 0.447 | 19.361 |
2 | 1 196 nm | 0.582 | 154 | 0.069 | 15.885 | -0.000 734 | 0.506 | 30.938 |
3 | 1 198 nm | 0.591 | 150 | 0.061 | 15.920 | -0.000 747 | 0.493 | 29.465 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 1 451 nm | 0.117 | 397 | 0.348 | 177.075 | -0.000 640 | 0.567 | 864.846 |
2 | 1 449 nm | 0.118 | 392 | 0.335 | 176.198 | -0.000 651 | 0.571 | 850.136 |
3 | 1 451 nm | 0.159 | 396 | 0.383 | 159.246 | -0.000 705 | 0.561 | 697.359 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 1 945 nm | 0.026 | 545 | 0.557 | 310.505 | -0.000 422 | 0.501 | 4 828.731 |
2 | 1 940 nm | 0.098 | 547 | 0.300 | 261.549 | -0.000 400 | 0.475 | 1 225.265 |
3 | 1 939 nm | 0.027 | 516 | 0.234 | 260.075 | -0.000 372 | 0.556 | 3 675.148 |
表2 3种类型盐生植物在675、975、1195、1450和1940 nm附近的光谱曲线特征及吸收特征参数
Table 2 Spectral curve characteristics and parameters of absorption of three types of halophytes around 675, 975, 1195, 1450 and 1940 nm
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
---|---|---|---|---|---|---|---|---|
1 | 674 nm | 0.034 | 167 | 0.478 | 100.736 | 0.003 898 | 0.551 | -3 174.500 |
2 | 676 nm | 0.093 | 200 | 0.460 | 117.948 | 0.003 090 | 0.415 | -1 320.320 |
3 | 676 nm | 0.055 | 200 | 0.532 | 121.460 | 0.002 890 | 0.405 | -2 087.450 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 974 nm | 0.756 | 155 | 0.028 | 3.376 | -0.000 155 | 0.639 | 5.934 |
2 | 976 nm | 0.680 | 148 | 0.062 | 6.186 | -0.000 034 | 0.622 | 2.171 |
3 | 974 nm | 0.688 | 143 | 0.053 | 6.261 | -0.000 042 | 0.594 | 2.331 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 1 194 nm | 0.746 | 159 | 0.055 | 9.535 | -0.000 541 | 0.447 | 19.361 |
2 | 1 196 nm | 0.582 | 154 | 0.069 | 15.885 | -0.000 734 | 0.506 | 30.938 |
3 | 1 198 nm | 0.591 | 150 | 0.061 | 15.920 | -0.000 747 | 0.493 | 29.465 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 1 451 nm | 0.117 | 397 | 0.348 | 177.075 | -0.000 640 | 0.567 | 864.846 |
2 | 1 449 nm | 0.118 | 392 | 0.335 | 176.198 | -0.000 651 | 0.571 | 850.136 |
3 | 1 451 nm | 0.159 | 396 | 0.383 | 159.246 | -0.000 705 | 0.561 | 697.359 |
植物类型 Plant type | 波谷波长位置 Wave trough wave length position | 波谷点反射值 Wave trough reflectance | 波谷宽度 Wave trough width (nm) | 波谷深度 Wave trough height | 波谷面积 Wave trough area | 波谷斜率 Wave trough slope | 波谷对称度 Wave trough symmetry | 波谷SAI Wave trough SAI |
1 | 1 945 nm | 0.026 | 545 | 0.557 | 310.505 | -0.000 422 | 0.501 | 4 828.731 |
2 | 1 940 nm | 0.098 | 547 | 0.300 | 261.549 | -0.000 400 | 0.475 | 1 225.265 |
3 | 1 939 nm | 0.027 | 516 | 0.234 | 260.075 | -0.000 372 | 0.556 | 3 675.148 |
图6 渭干河-库车河绿洲典型盐生植物反射光谱二阶导数极值出现频率最高排名的频率分布图。I-V, 谱带。
Fig. 6 Frequency distribution map of large-magritude second derivative occurrences of typical halophyte reflect spectra in Weigan-Kuqa river oasis. I-V, bands.
图8 盐漠带7种盐生植物二阶导数极值出现频率最高排名的频率分布图。
Fig. 8 Frequency distribution map of large- magnitude second derivative occurreaes of seven halophytes in the oasis.
[1] | Carter GA (1998). Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment, 63, 61-72. |
[2] | Cheng WM (程维明), Zhou CH (周成虎), Li JX (李建新) (2001). Evolution of Manas Lake landscape in Xin- jiang and its eco-environmental effect. Quaternary Sciences (第四纪研究), 21, 560-565. (in Chinese with English abstract) |
[3] | Chen ZG (陈志刚), Shu J (束炯) (2008). Empirical mode decomposition on removing spectral noise in hyperspectral image. Journal of Infrared and Millimeter Waves (红外与毫米波学报), 27, 378-382. (in Chinese with English abstract) |
[4] |
Cochrane MA (2000). Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote Sensing, 21, 2075-2087.
DOI URL |
[5] | Demetriades-Shah TH, Steven MD, Clark JA (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33, 55-64. |
[6] | Du HQ (杜华强) (2002). A study of Hyperspectral Remote Sensing Data Preprocessing and Spectral Rebuilding in Desertification Areas. (荒漠化地区高光谱遥感数据预处理及地物光谱重建的研究) Master degree dissertation, Northeast Forestry University, Harbin. (in Chinese with English abstract) |
[7] | Du HQ (杜华强), Jin W (金伟), Ge HL (葛宏立), Fan WY (范文义), Xu XJ (徐小军) (2009). Using fractal dimensions of hyperspectral curves to analyze the healthy status of vegetation. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 29, 2136-2140. (in Chinese with English abstract) |
[8] | Han DL (韩德麟) (1999). Elementary study of oasis constancy. Journal of Ningxia University (Natural Science Edition) 宁夏大学学报(自然科学版)), 20(2), 27-31. (in Chinese with English abstract) |
[9] | He FL (何芳兰), Li ZY (李治元), Zhao M (赵明), Yu QS (尉秋实), Guo SJ (郭树江), Wang DZ (王多泽) (2010). Natural vegetation succession and soil water change in fallow salinization cropland in Minqin oasis, Gansu Province. Journal of Desert Research (中国沙漠), 30, 1374-1380. (in Chinese with English abstract) |
[10] | Lin WP (林文鹏), Li HZ (李厚增), Huang JF (黄敬峰), Liu DY (刘冬燕), Zong W (宗玮), Hu XM (胡小猛) (2010). Analysis on urban vegetations reflectance characteristics in Shanghai. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 30, 3111-3114. (in Chinese with English abstract) |
[11] | Liu K (刘克), Zhao WJ (赵文吉), Guo XY (郭逍宇), Hu DY (胡德勇), Gong ZN (宫兆宁), Long J (龙娟) (2010). Spectral bands of typical wetland vegetation in the Wild Duck Lake. Acta Ecologica Sinica (生态学报), 30, 5853-5861. (in Chinese with English abstract) |
[12] |
Palacios-Orueta A, Ustin SL (1998). Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis. Remote Sensing of Environment, 65, 170-183.
DOI URL |
[13] | Su HJ (苏红军), Du PJ (杜培军), Sheng YH (盛业华) (2008). Study on feature extraction and experiment of hyperspectral data. Application Research of Computers (计算机应用研究), 25, 390-394. (in Chinese with English abstract) |
[14] | Su LH (苏理宏), Li XW (李小文), Wang JD (王锦地), Tang SH (唐世浩) (2003). Some problems in constructing the ground object spectral knowledge base and its services. Advance in Earth Sciences (地球科学进展), 18, 185-191. (in Chinese with English abstract) |
[15] |
Thenkabail PS, Enclona EA, Ashton MS, Legg C, de Dieu MJ (2004). Hyperion, IKONOS, ALI and ETM+ sensors in the study of African rainforests . Remote Sensing of Environment, 90, 23-43.
DOI URL |
[16] | Thenkabail PS, Smith RB, Pauw ED (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158-182. |
[17] | Tian YC (田亦陈), Jia K (贾坤), Wu BF (吴炳方), Li QZ (李强子) (2010). Study on spectral reflectance characteristics of hemp canopies. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 30, 3334-3337. (in Chinese with English abstract) |
[18] | Wang JN (王晋年), Zhang B (张兵), Liu JG (刘建贵), Tong QX (童庆禧), Zheng LF (郑兰芬) (1999). Hyperspectral data mining—Toward target recognition and classification. Journal of Image and Graphics (中国图象图形学报), 4, 957-964. (in Chinese with English abstract) |
[19] | Wang JN (王晋年), Zheng LF (郑兰芬), Tong QX (童庆禧) (1996). The spectral absorption identification model and mineral mapping by imaging spectrometer data. Remote Sensing of Environment (环境遥感), 11, 20-31. (in Chinese with English abstract) |
[20] | Wang L (王雷), Zhang DY (张道远), Huang ZY (黄振英), Tian CY (田长彦) (2008). Floristic analysis of halophytes in Xinjiang. Scientia Silvae Sinicae (林业科学), 44(7), 36-42. (in Chinese with English abstract) |
[21] | Xie H (谢辉), Yu ET (于恩涛), Kong QY (孔琼英), Lü GH (吕光辉) (2009). Study on the halophytes in Aibi Lake Wetland Nature Reserve. Journal of Arid Land Resources and Environment (干旱区资源与环境), 23, 176-180. (in Chinese with English abstract) |
[22] | Xu HL (徐海量), Song YD (宋郁东), Wang Q (王强), Mti A (艾合买提) (2004). The effect of groundwater level on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China. Acta Phytoecologica Sinica (植物生态学报), 28, 400-405. (in Chinese with English abstract) |
[23] | Xu WD (许卫东), Yin Q (尹球), Kuang DB (匡定波) (2005). Comparison of different spectral match model. Journal of Infrared and Millimeter Waves (红外与毫米波学报), 24, 296-300. (in Chinese with English abstract) |
[24] | Yang XD (杨晓东), Lü GH (吕光辉), Wang YS (王银山), Zhang XM (张雪梅) (2010). Water use efficiency of halophytes in Ebinur Lake Wetland Nature Reserve of Xinjiang. Chinese Journal of Ecology (生态学杂志), 29, 2341-2346. (in Chinese with English abstract) |
[25] | Zhang F (张飞) (2011). Study on the Spectral Characteristics of Salinized Soils with Ground Objects in the Typical Oasis of Arid Area. (干旱区典型绿洲盐渍地地物光谱特征研究) PhD dissertation, Xinjiang University, Ürümqi. (in Chinese with English abstract) |
[26] | Zhang F (张飞), Tashpolat T (塔西甫拉提·特依拜), Ding JL (丁建丽), He QS (何祺胜) (2008). Spectral properties analysis of salinity soils with ground objects in the north of Tarim Basin. Journal of Northeast Forestry University (东北林业大学学报), 36(6), 37-42. (in Chinese with English abstract) |
[27] | Zheng LF (郑兰芬), Wang JN (王晋年) (1992). A study on imaging spectrometry and its extraction of image spectral information. Remote Sensing of Environment (环境遥感), 7, 49-58. (in Chinese with English abstract) |
[1] | 雍艳华, 张霞, 王绍明, 吴玲. 新疆典型盐生植物营养器官盐分积累与生态化学计量特征[J]. 植物生态学报, 2016, 40(12): 1267-1275. |
[2] | 刘涛宇, 赵霞, 沈海花, 胡会峰, 黄文江, 方精云. 灌丛化草原灌木和草本植物光谱特征差异及灌木盖度反演——以内蒙古镶黄旗为例[J]. 植物生态学报, 2016, 40(10): 969-979. |
[3] | 王雷, 董鸣, 黄振英. 种子异型植物异子蓬的生殖分配和结实格局[J]. 植物生态学报, 2012, 36(9): 948-955. |
[4] | 杨帆, 曹德昌, 杨学军, 高瑞如, 黄振英. 盐生植物角果碱蓬种子二型性对环境的适应策略[J]. 植物生态学报, 2012, 36(8): 781-790. |
[5] | 张科, 田长彦, 李春俭. 一年生盐生植物耐盐机制研究进展[J]. 植物生态学报, 2009, 33(6): 1220-1231. |
[6] | 殷立娟, 石德成, 薛萍. 松嫩平原草原5种耐盐牧草体内K+, Na+ 的分布与积累的研究[J]. 植物生态学报, 1994, 18(1): 34-40. |
[7] | 李兴东. 典范分析法在黄河三角洲莱州湾滨海区盐生植物群落研究中的应用[J]. 植物生态学报, 1988, 12(4): 300-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19