[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]西藏高寒草原群落植物根系属性在降水梯度下的变异格局
收稿日期: 2018-06-11
录用日期: 2018-10-16
网络出版日期: 2019-03-13
基金资助
国家重点研发计划(2016YFC0501802)
Variations of root traits in three Xizang grassland communities along a precipitation gradient
Received date: 2018-06-11
Accepted date: 2018-10-16
Online published: 2019-03-13
Supported by
Supported by the National Key R&D Program of China(2016YFC0501802)
根系功能属性及其变异性能够介导物种共存及环境适应策略, 但强烈的环境约束作用能够引起不同物种间根系属性的趋同性。为了研究西藏高寒草原群落中植物根系属性变异规律, 并阐明不同物种资源获取和适应策略的多样性, 该文对西藏高寒草原不同的环境梯度进行了研究。作者自东向西沿着降水梯度在那曲、班戈和尼玛3个自然草原群落进行群落调查, 并采集了共计22种植物。测定了每种植物的一级根直径、一级侧根长度和根系分支强度3个关键根系属性。结果表明: 在西藏高寒草原群落中, 不同物种根系直径普遍较小, 且种间变异非常小(22.76%), 其中86%的物种一级根直径集中在0.073 mm到0.094 mm之间; 相较于直径较粗的物种, 直径越细的物种分支强度越高, 侧根越短。在群落尺度上, 植物主要通过增加根系直径、侧根长度, 降低分支强度的方式来适应水分的减少; 而在物种尺度上, 植物适应水分变化的策略则呈现多样性。
周玮, 李洪波, 曾辉 . 西藏高寒草原群落植物根系属性在降水梯度下的变异格局[J]. 植物生态学报, 2018 , 42(11) : 1094 -1102 . DOI: 10.17521/cjpe.2018.0140
Aims Root functional traits and their variations mediate coexistence and adaptive strategy of plant species. Yet, strong environmental constraints may induce convergence of root traits among different plant species. To study the variations of root traits and clarify the diverse adaptive strategies across plant species, we sampled three alpine grasslands along a precipitation gradient in the Xizang Plateau.
Methods In three grassland communities along a precipitation gradient: Nagqu, Baingoin and Nyima from east to west of Xizang Plateau, we collected 22 coexisting plant species and measured three key root traits: 1st-order root diameter, 1st-order lateral root length and root branch intensity.
Important findings The main results showed that: (1) the root of plants in the alpine grassland was generally thin, and the interspecific variation was also small (22.76%); (2) the root diameter of 86% plant species was in the range from 0.073 mm to 0.094 mm. Compared with the thick-root species, thin-root species had a higher root branching intensity, but shorter lateral root length. In addition, at community-level, plants mainly increased root diameter and lateral root length, but reduced root branching intensity to adapt to the decreasing precipitation; while at species-level, the plant species exhibited diverse adaptive strategies along the precipitation gradient.
[1] | Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within-and among-community components. Ecology Letters, 10, 135-145. |
[2] | Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C ( 2011). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology Evolution & Systematics, 13, 217-225. |
[3] | Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S ( 2010). A multi-trait approach reveals the structure and the relative importance of intraspecific vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201. |
[4] | Bernston GM ( 1997). Topological scaling and plant root system architecture: Developmental and functional hierarchies. New Phytologist, 135, 621-634. |
[5] | Bystrova EI, Zhukovskaya NV, Ivanov VB ( 2018). Dependence of root cell growth and division on root diameter. Russian Journal of Developmental Biology, 49, 79-86. |
[6] | Chen J, Luo Y, Xia J, Cao J ( 2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural & Forest Meteorology, 220, 21-29. |
[7] | Chen W, Zeng H, Eissenstat DM, Guo D ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology & Biogeography, 22, 846-856. |
[8] | Cornwell WK, Ackerly DD ( 2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[9] | Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet'ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD ( 2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[10] | Dwyer JM, Laughlin DC ( 2017). Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecology Letters, 20, 872-882. |
[11] | Eissenstat DM ( 1991). On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytologist, 118, 63-68. |
[12] | Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT ( 2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124. |
[13] | Fajardo A, Piper FI ( 2011). Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist, 189, 259. |
[14] | Fitter AH ( 1987). An architectural approach to the comparative ecology of plant root systems. New Phytologist, 106, 61-77. |
[15] | Jiang YB, Fan M, Zhang YJ ( 2017). Effect of short-term warming on plant community features of alpine meadow in Northern Tibet. Chinese Journal of Ecology, 36, 616-622. |
[15] | [ 姜炎彬, 范苗, 张扬建 ( 2017). 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 36, 616-622.] |
[16] | Jung V, Muller S ( 2010). Intraspecific variability and trait- based community assembly. Journal of Ecology, 98, 1134-1140. |
[17] | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO ( 2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464. |
[18] | Kichenin E, Freschet GT ( 2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27, 1254-1261. |
[19] | Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872. |
[20] | Kraft NJB, Godoy O, Levine JM ( 2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802. |
[21] | Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M ( 2011). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. |
[22] | Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA ( 2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840. |
[23] | Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA, Fulé PZ ( 2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299. |
[24] | Laughlin DC, Messier J ( 2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30, 487-496. |
[25] | Li H, Liu B, Mccormack ML, Ma Z, Guo D ( 2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150. |
[26] | Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136. |
[27] | Lynch JP ( 2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347. |
[28] | McCormack ML, Adams TS, Smithwick EA, Eissenstat DM ( 2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831. |
[29] | Messier J, Mcgill BJ, Lechowicz MJ ( 2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848. |
[30] | Muscarella R, Uriarte M ( 2016). Do community-weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B: Biological, 283, 20152434. DOI: 10.?1098/rspb.2015.2434. |
[31] | Nosil P, Harmon LJ, Seehausen O ( 2009). Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution, 24, 145-156. |
[32] | Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E ( 2012). Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a mediterranean rangeland of southern France. Journal of Ecology, 100, 1315-1327. |
[33] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
[34] | Reich PB ( 2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301. |
[35] | Umaña MN, Zhang C, Cao M, Lin L, Swenson NG ( 2015). Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18, 1329. |
[36] | Valladares F, Bastias CC, Godoy O, Granda E, Escudero A ( 2015). Species coexistence in a changing world. Frontiers in Plant Science, 6, 866. |
[37] | Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573. |
[38] | Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J ( 2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
[39] | Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT ( 2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gradient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21, 17-25. |
[39] | [ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 ( 2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21, 17-25.] |
[40] | Zhan A, Schneider H, Lynch JP ( 2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 168, 1603-1615. |
[41] | Zhu GL, Li J, Wei XH, He NP ( 2017). Longitudinal patterns of productivity and plant diversity in Tibetan alpine grasslands. Journal of Natural Resources, 32, 210-222. |
[41] | [ 朱桂丽, 李杰, 魏学红, 何念鹏 ( 2017). 青藏高寒草地植被生产力与生物多样性的经度格局. 自然资源学报, 32, 210-222.] |
/
〈 |
|
〉 |