植物生态学报 ›› 2018, Vol. 42 ›› Issue (11): 1094-1102.DOI: 10.17521/cjpe.2018.0140
所属专题: 青藏高原植物生态学:群落生态学
收稿日期:
2018-06-11
接受日期:
2018-10-16
出版日期:
2018-11-20
发布日期:
2019-03-13
通讯作者:
李洪波
基金资助:
ZHOU Wei1,LI Hong-Bo2,*(),ZENG Hui1
Received:
2018-06-11
Accepted:
2018-10-16
Online:
2018-11-20
Published:
2019-03-13
Contact:
Hong-Bo LI
Supported by:
摘要:
根系功能属性及其变异性能够介导物种共存及环境适应策略, 但强烈的环境约束作用能够引起不同物种间根系属性的趋同性。为了研究西藏高寒草原群落中植物根系属性变异规律, 并阐明不同物种资源获取和适应策略的多样性, 该文对西藏高寒草原不同的环境梯度进行了研究。作者自东向西沿着降水梯度在那曲、班戈和尼玛3个自然草原群落进行群落调查, 并采集了共计22种植物。测定了每种植物的一级根直径、一级侧根长度和根系分支强度3个关键根系属性。结果表明: 在西藏高寒草原群落中, 不同物种根系直径普遍较小, 且种间变异非常小(22.76%), 其中86%的物种一级根直径集中在0.073 mm到0.094 mm之间; 相较于直径较粗的物种, 直径越细的物种分支强度越高, 侧根越短。在群落尺度上, 植物主要通过增加根系直径、侧根长度, 降低分支强度的方式来适应水分的减少; 而在物种尺度上, 植物适应水分变化的策略则呈现多样性。
周玮, 李洪波, 曾辉. 西藏高寒草原群落植物根系属性在降水梯度下的变异格局. 植物生态学报, 2018, 42(11): 1094-1102. DOI: 10.17521/cjpe.2018.0140
ZHOU Wei, LI Hong-Bo, ZENG Hui. Variations of root traits in three Xizang grassland communities along a precipitation gradient. Chinese Journal of Plant Ecology, 2018, 42(11): 1094-1102. DOI: 10.17521/cjpe.2018.0140
地点 Site | 经纬度 Latitude and longitude | 年平均气温 Mean annual temperature (℃) | 年降水量 Mean annual precipitation (mm) | 海拔 Elevation (m) | 土壤氮含量 Soil N (%) | 土壤碳含量 Soil C (%) | 土壤碳氮比 Soil C:N |
---|---|---|---|---|---|---|---|
那曲 Nagqu | 31.65° N, 92.02° E | -2.2 | 445 | 4 600 | 0.193 | 1.965 | 22.97 |
班戈 Baingoin | 31.43° N, 90.03° E | -1.2 | 329 | 4 700 | 0.117 | 1.081 | 13.93 |
尼玛 Nyima | 32.08° N, 86.90° E | -3.1 | 286 | 4 780 | 0.115 | 2.062 | 18.24 |
表1 西藏高寒草原群落根系样地基本信息
Table 1 Basic information of the sampling sites of root in Xizang alpine grassland communities
地点 Site | 经纬度 Latitude and longitude | 年平均气温 Mean annual temperature (℃) | 年降水量 Mean annual precipitation (mm) | 海拔 Elevation (m) | 土壤氮含量 Soil N (%) | 土壤碳含量 Soil C (%) | 土壤碳氮比 Soil C:N |
---|---|---|---|---|---|---|---|
那曲 Nagqu | 31.65° N, 92.02° E | -2.2 | 445 | 4 600 | 0.193 | 1.965 | 22.97 |
班戈 Baingoin | 31.43° N, 90.03° E | -1.2 | 329 | 4 700 | 0.117 | 1.081 | 13.93 |
尼玛 Nyima | 32.08° N, 86.90° E | -3.1 | 286 | 4 780 | 0.115 | 2.062 | 18.24 |
根属性 Root trait | 最小值 Min. | 最大值 Max. | 平均值 Mean | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
一级根直径 1st-order root diameter (mm) | 0.073 | 0.142 | 0.088 | 22.76 |
一级根长度 1st-order root length (mm) | 0.335 | 5.239 | 1.541 | 80.19 |
根系分支强度 Root branching intensity (No.cm-1) | 1.119 | 12.041 | 4.439 | 61.05 |
表2 西藏高寒草原22种植物的根系属性变异情况
Table 2 Summary of the three root traits for 22 species in Xizang alpine grassland
根属性 Root trait | 最小值 Min. | 最大值 Max. | 平均值 Mean | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
一级根直径 1st-order root diameter (mm) | 0.073 | 0.142 | 0.088 | 22.76 |
一级根长度 1st-order root length (mm) | 0.335 | 5.239 | 1.541 | 80.19 |
根系分支强度 Root branching intensity (No.cm-1) | 1.119 | 12.041 | 4.439 | 61.05 |
根属性 Root trait | 一级根直径 1st-order root diameter | 分支强度 Root branching intensity | 一级根长度 1st-order root length |
---|---|---|---|
一级根直径 1st-order root diameter | -0.008ns | 0.672** | |
根系分支强度 Root branching intensity | -0.432* | -0.139ns | |
一级根长度 1st-order root length | 0.728** | -0.573** |
表3 西藏高寒草原22种植物去除种系发生信号(右上)与未去除种系发生信号(左下)时3个根属性间的Pearson相关性
Table 3 Pearson correlations with (top right) and without (bottom left) phylogenetically independent contrasts for root traits across 22 species in Xizang alpine grassland
根属性 Root trait | 一级根直径 1st-order root diameter | 分支强度 Root branching intensity | 一级根长度 1st-order root length |
---|---|---|---|
一级根直径 1st-order root diameter | -0.008ns | 0.672** | |
根系分支强度 Root branching intensity | -0.432* | -0.139ns | |
一级根长度 1st-order root length | 0.728** | -0.573** |
图2 不同降水梯度上的西藏高寒草原3个草原群落加权后的根系属性。
Fig. 2 Community-weighted root traits of the three grasslands along the precipitation gradient in Xizang alpine grassland.
图3 西藏高原3个草原类型中7个共有物种(同时出现在两个或三个地区)的根系属性(平均值+标准误差)。Ad, 纤杆蒿; Ts, 西藏三毛草; Lp, 弱小火绒草; Sp, 紫花针茅; Pb, 二裂委陵菜; Om, 小叶棘豆; Hs, 半卧狗娃花。
Fig. 3 Root trait mean values of seven regionally common species (appearing in two or three sites at the same time) at three grassland sites (mean + SE) in Xizang alpine grassland. Ad, Artemisia demissa; Ts, Trisetum spicatum; Lp, Leontopodium pusillum; Sp, Stipa purpurea; Pb, Potentilla bifurca; Om, Oxytropis microphylla; Hs, Heteropappus semiprostratus.
图4 西藏高原3个草原类型7个共有物种根系属性随水分变化的平均百分比。Hs, 半卧狗娃花; Om, 小叶棘豆; Pb, 二裂委陵菜; Sp, 紫花针茅; Lp, 弱小火绒草; Ts, 西藏三毛草; Ad, 纤杆蒿。
Fig. 4 The average percentage of root traits of seven regionally common species (appearing in two or three sites at the same time) to water stress at three grassland sites in Xizang alpine grassland. Ad, Artemisia demissa; Ts, Trisetum spicatum; Lp, Leontopodium pusillum; Sp, Stipa purpurea; Pb, Potentilla bifurca; Om, Oxytropis microphylla; Hs, Heteropappus semiprostratus.
[1] |
Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within-and among-community components. Ecology Letters, 10, 135-145.
DOI URL PMID |
[2] |
Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C ( 2011). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology Evolution & Systematics, 13, 217-225.
DOI URL |
[3] |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S ( 2010). A multi-trait approach reveals the structure and the relative importance of intraspecific vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
DOI URL |
[4] |
Bernston GM ( 1997). Topological scaling and plant root system architecture: Developmental and functional hierarchies. New Phytologist, 135, 621-634.
DOI URL |
[5] |
Bystrova EI, Zhukovskaya NV, Ivanov VB ( 2018). Dependence of root cell growth and division on root diameter. Russian Journal of Developmental Biology, 49, 79-86.
DOI URL |
[6] |
Chen J, Luo Y, Xia J, Cao J ( 2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural & Forest Meteorology, 220, 21-29.
DOI URL |
[7] |
Chen W, Zeng H, Eissenstat DM, Guo D ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology & Biogeography, 22, 846-856.
DOI URL |
[8] |
Cornwell WK, Ackerly DD ( 2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126.
DOI URL |
[9] |
Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet'ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD ( 2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[10] |
Dwyer JM, Laughlin DC ( 2017). Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecology Letters, 20, 872-882.
DOI URL PMID |
[11] |
Eissenstat DM ( 1991). On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytologist, 118, 63-68.
DOI URL |
[12] |
Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT ( 2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
DOI URL PMID |
[13] |
Fajardo A, Piper FI ( 2011). Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist, 189, 259.
DOI URL PMID |
[14] |
Fitter AH ( 1987). An architectural approach to the comparative ecology of plant root systems. New Phytologist, 106, 61-77.
DOI URL |
[15] |
Jiang YB, Fan M, Zhang YJ ( 2017). Effect of short-term warming on plant community features of alpine meadow in Northern Tibet. Chinese Journal of Ecology, 36, 616-622.
DOI URL |
[ 姜炎彬, 范苗, 张扬建 ( 2017). 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 36, 616-622.]
DOI URL |
|
[16] |
Jung V, Muller S ( 2010). Intraspecific variability and trait- based community assembly. Journal of Ecology, 98, 1134-1140.
DOI URL |
[17] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO ( 2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI URL PMID |
[18] |
Kichenin E, Freschet GT ( 2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27, 1254-1261.
DOI URL |
[19] |
Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI URL PMID |
[20] |
Kraft NJB, Godoy O, Levine JM ( 2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
DOI URL PMID |
[21] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M ( 2011). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI URL PMID |
[22] |
Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA ( 2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840.
DOI URL PMID |
[23] |
Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA, Fulé PZ ( 2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299.
DOI URL PMID |
[24] |
Laughlin DC, Messier J ( 2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30, 487-496.
DOI URL PMID |
[25] |
Li H, Liu B, Mccormack ML, Ma Z, Guo D ( 2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150.
DOI URL PMID |
[26] |
Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI URL PMID |
[27] |
Lynch JP ( 2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347.
DOI URL |
[28] |
McCormack ML, Adams TS, Smithwick EA, Eissenstat DM ( 2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
DOI URL PMID |
[29] |
Messier J, Mcgill BJ, Lechowicz MJ ( 2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
DOI URL PMID |
[30] |
Muscarella R, Uriarte M ( 2016). Do community-weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B: Biological, 283, 20152434. DOI: 10.?1098/rspb.2015.2434.
DOI URL PMID |
[31] |
Nosil P, Harmon LJ, Seehausen O ( 2009). Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution, 24, 145-156.
DOI URL PMID |
[32] |
Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E ( 2012). Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a mediterranean rangeland of southern France. Journal of Ecology, 100, 1315-1327.
DOI URL |
[33] |
Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[34] |
Reich PB ( 2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[35] |
Umaña MN, Zhang C, Cao M, Lin L, Swenson NG ( 2015). Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18, 1329.
DOI URL PMID |
[36] |
Valladares F, Bastias CC, Godoy O, Granda E, Escudero A ( 2015). Species coexistence in a changing world. Frontiers in Plant Science, 6, 866.
DOI URL PMID |
[37] |
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
DOI URL |
[38] | Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J ( 2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
[39] |
Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT ( 2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gradient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21, 17-25.
DOI URL |
[ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 ( 2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21, 17-25.]
DOI URL |
|
[40] |
Zhan A, Schneider H, Lynch JP ( 2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 168, 1603-1615.
DOI URL PMID |
[41] | Zhu GL, Li J, Wei XH, He NP ( 2017). Longitudinal patterns of productivity and plant diversity in Tibetan alpine grasslands. Journal of Natural Resources, 32, 210-222. |
[ 朱桂丽, 李杰, 魏学红, 何念鹏 ( 2017). 青藏高寒草地植被生产力与生物多样性的经度格局. 自然资源学报, 32, 210-222.] |
[1] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[2] | 项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022, 46(5): 593-601. |
[3] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[4] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[5] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[6] | 王雪梅, 闫帮国, 史亮涛, 刘刚才. 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异[J]. 植物生态学报, 2020, 44(12): 1247-1261. |
[7] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[8] | 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1): 116-125. |
[9] | 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559-569. |
[10] | 李春丽, 李奇, 赵亮, 赵新全. 环青海湖地区天然草地和退耕恢复草地植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2016, 40(10): 1015-1027. |
[11] | 米兆荣, 陈立同, 张振华, 贺金生. 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J]. 植物生态学报, 2015, 39(7): 649-660. |
[12] | 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11): 1062-1070. |
[13] | 温军, 周华坤, 姚步青, 李以康, 赵新全, 陈哲, 连利叶, 郭凯先. 三江源区不同退化程度高寒草原土壤呼吸特征[J]. 植物生态学报, 2014, 38(2): 209-218. |
[14] | 郭京衡, 曾凡江, 李尝君, 张波. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36-44. |
[15] | 叶学华,胡宇坤,刘志兰,高树琴,董鸣. 水分异质性影响两种根茎型克隆植物赖草和假苇拂子茅的水分存储能力[J]. 植物生态学报, 2013, 37(5): 427-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19