植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1247-1261.DOI: 10.17521/cjpe.2020.0199
所属专题: 植物功能性状
收稿日期:
2020-06-18
接受日期:
2020-09-25
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
刘刚才
作者简介:
*(liugc@imde.ac.cn)基金资助:
WANG Xue-Mei1,2, YAN Bang-Guo3, SHI Liang-Tao3, LIU Gang-Cai2,*()
Received:
2020-06-18
Accepted:
2020-09-25
Online:
2020-12-20
Published:
2021-04-01
Contact:
LIU Gang-Cai
Supported by:
摘要:
调整叶性状和生物量分配格局是植物适应环境变化的主要途径, 研究车桑子(Dodonaea viscosa)幼苗生物量分配与叶性状对氮磷浓度的响应对认识车桑子在氮磷浓度变化下的适应策略具有重要意义。该研究通过砂培法, 测定不同氮浓度(3、5、15、30 mmol·L-1)与不同磷浓度(0.25、0.5、1、2 mmol·L-1)下车桑子幼苗的生长、生物量分配、叶性状的响应特征及其相互关系。结果表明: 高浓度氮(30 mmol·L-1)促进了车桑子幼苗生长、叶片氮含量和生物量积累, 其余氮添加条件(3、5、15 mmol·L-1)下车桑子幼苗各性状无显著差异, 但相比高氮水平, 其生物量积累和叶片氮含量显著降低, 根冠比和氮利用效率显著增加。随着磷添加浓度的增加, 车桑子幼苗生物量显著增加, 低磷条件(0.25、0.5 mmol·L-1)限制了车桑子幼苗生长和生物量积累, 其根冠比和磷利用效率均没有发生显著变化, 但比叶面积和叶/茎生物量比例显著增加, 叶干物质含量显著降低。氮处理下, 叶片氮含量与根冠比显著负相关; 磷处理下, 叶片氮含量与比叶面积显著正相关。同时, 氮处理下, 车桑子幼苗株高、基径、总生物量等生长性状均与根冠比显著负相关, 与叶片氮含量显著正相关, 表明根冠比和叶片氮含量的调整在车桑子适应氮限制中发挥重要作用; 而磷处理下, 株高、基径、总生物量与比叶面积显著负相关, 与叶干物质含量显著正相关, 表明叶片结构性状的调整在车桑子适应低磷环境中具有重要意义。该研究表明, 车桑子幼苗生物量分配和叶性状及性状间的权衡策略对氮、磷的响应具有明显差异性, 在今后的研究中, 应关注氮和磷对植物性状影响的差异性。
王雪梅, 闫帮国, 史亮涛, 刘刚才. 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异. 植物生态学报, 2020, 44(12): 1247-1261. DOI: 10.17521/cjpe.2020.0199
WANG Xue-Mei, YAN Bang-Guo, SHI Liang-Tao, LIU Gang-Cai. Different responses of biomass allocation and leaf traits of Dodonaea viscosa to concentrations of nitrogen and phosphorus. Chinese Journal of Plant Ecology, 2020, 44(12): 1247-1261. DOI: 10.17521/cjpe.2020.0199
氮、磷水平 N, P levels | 氮浓度 N concentration (mmol·L-1) | 磷浓度 P concentration (mmol·L-1) | 氮磷比 N:P |
---|---|---|---|
N1 | 3 | 1 | 3 |
N2 | 5 | 1 | 5 |
N3 | 15 | 1 | 15 |
N4 | 30 | 1 | 30 |
P1 | 15 | 0.25 | 60 |
P2 | 15 | 0.5 | 30 |
P3 | 15 | 1 | 15 |
P4 | 15 | 2 | 7.5 |
表1 各氮磷浓度梯度下营养液的氮磷浓度和氮磷比值
Table 1 N and P concentrations and the N:P ratio in different nitrogen and phosphorus concentration gradients
氮、磷水平 N, P levels | 氮浓度 N concentration (mmol·L-1) | 磷浓度 P concentration (mmol·L-1) | 氮磷比 N:P |
---|---|---|---|
N1 | 3 | 1 | 3 |
N2 | 5 | 1 | 5 |
N3 | 15 | 1 | 15 |
N4 | 30 | 1 | 30 |
P1 | 15 | 0.25 | 60 |
P2 | 15 | 0.5 | 30 |
P3 | 15 | 1 | 15 |
P4 | 15 | 2 | 7.5 |
图1 不同氮浓度和磷浓度对车桑子幼苗株高和基径的影响(平均值±标准误差)。 N1-N4, 氮浓度分别为3、5、15、30 mmol·L-1; P1-P4, 磷浓度分别为0.25、0.5、1、2 mmol·L-1。不同小写字母表示不同氮处理或不同磷处理下差异显著(p < 0.05)。
Fig. 1 Effects of different nitrogen and phosphorus concentrations on height and base diameter of Dodonaea viscosa seedlings (mean ± SE). N1-N4, the nitrogen concentrations were 3, 5, 15 and 30 mmol·L-1, respectively; P1-P4, the phosphorus concentrations were 0.25, 0.5, 1 and 2 mmol·L-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) among different nitrogen treatments or different phosphorus treatments.
图2 不同氮浓度和磷浓度对车桑子幼苗生物量的影响(平均值±标准误差)。 N1-N4, 氮浓度分别为3、5、15、30 mmol·L-1; P1-P4, 磷浓度分别为0.25、0.5、1、2 mmol·L-1。不同小写字母表示不同氮处理或不同磷处理下差异显著(p < 0.05)。
Fig. 2 Effects of different nitrogen and phosphorus concentrations on biomass of Dodonaea viscosa seedlings (mean ± SE). N1-N4, the nitrogen concentrations were 3, 5, 15 and 30 mmol·L-1, respectively; P1-P4, the phosphorus concentrations were 0.25, 0.5, 1 and 2 mmol·L-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) among different nitrogen treatments or different phosphorus treatments.
图3 不同氮浓度和磷浓度对车桑子幼苗根冠比和叶/茎生物量比例的影响(平均值±标准误差)。 N1-N4, 氮浓度分别为3、5、15、30 mmol·L-1; P1-P4, 磷浓度分别为0.25、0.5、1、2 mmol·L-1。不同小写字母表示不同氮处理或不同磷处理下差异显著(p < 0.05)。
Fig. 3 Effects of different nitrogen and phosphorus concentrations on the root:shoot biomass ratio and the leaf:stem biomass ratio of Dodonaea viscosa seedlings (mean ± SE). N1-N4, the nitrogen concentrations were 3, 5, 15 and 30 mmol·L-1, respectively; P1-P4, the phosphorus concentrations were 0.25, 0.5, 1 and 2 mmol·L-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) among different nitrogen treatments or different phosphorus treatments.
图4 不同氮浓度和磷浓度对车桑子幼苗叶面积、叶干物质含量和比叶面积的影响(平均值±标准误差)。 N1-N4, 氮浓度分别为3、5、15、30 mmol·L-1; P1-P4, 磷浓度分别为0.25、0.5、1、2 mmol·L-1。不同小写字母表示不同氮处理或不同磷处理下差异显著(p < 0.05)。
Fig. 4 Effects of different nitrogen and phosphorus concentrations on leaf area, leaf dry mass content and specific leaf area of Dodonaea viscosa seedlings (mean ± SE). N1-N4, the nitrogen concentrations were 3, 5, 15 and 30 mmol·L-1, respectively; P1-P4, the phosphorus concentrations were 0.25, 0.5, 1 and 2 mmol·L-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) among different nitrogen treatments or different phosphorus treatments.
图5 不同氮浓度和磷浓度对车桑子幼苗叶片氮含量、磷含量和叶片氮磷比的影响(平均值±标准误差)。 N1-N4, 氮浓度分别为3、5、15、30 mmol·L-1; P1-P4, 磷浓度分别为0.25、0.5、1、2 mmol·L-1。不同小写字母表示不同氮处理或不同磷处理下差异显著(p < 0.05)。
Fig. 5 Effects of different nitrogen and phosphorus concentrations on leaf N concentration, leaf P concentration and leaf N:P of Dodonaea viscosa seedlings (mean ± SE). N1-N4, the nitrogen concentrations were 3, 5, 15 and 30 mmol·L-1, respectively; P1-P4, the phosphorus concentrations were 0.25, 0.5, 1 and 2 mmol·L-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) among different nitrogen treatments or different phosphorus treatments.
图6 氮处理条件下车桑子幼苗叶片氮含量与营养液氮浓度、叶片氮磷比与营养液氮磷比的关系。 H, 内稳性指数。
Fig. 6 Relationships between leaf N concentration of Dodonaea viscosa seedlings and N concentration of the nutrient solution, leaf N:P of Dodonaea viscosa seedlings and N:P of the nutrient solution under different nitrogen treatments. H, homeostatic regulation coefficients.
图7 各营养液氮磷比条件下车桑子幼苗叶片氮利用效率和磷利用效率(平均值±标准误差)。
Fig. 7 Leaf N utilization efficiency and leaf P utilization efficiency of Dodonaea viscosa seedlings under different N:P ratios of the nutrient solution (mean ± SE).
处理 Treat | 指标 Value | 生长性状 Growth trait | 生物量分配 Biomass allocation | 叶功能性状 Leaf functional trait | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 基径 Base diameter | 生物量 Biomass | 根冠比 Root:shoot ratio | 叶茎比 Leaf:stem ratio | 叶干物质 含量 LDMC | 比叶面积 SLA | 叶片氮含量 N concentration | 叶片磷含量 P concentration | 氮磷比 N:P | ||
氮处理 Nitrogen treatment | 株高 Plant height | 1 | 0.917*** | 0.915*** | -0.848*** | -0.477* | 0.404 | -0.249 | 0.840*** | 0.180 | 0.464 |
基径 Base diameter | 1 | 0.955*** | -0.705** | -0.380 | 0.366 | -0.205 | 0.886*** | 0.301 | 0.436 | ||
生物量 Biomass | 1 | -0.773*** | -0.282 | 0.403 | -0.269 | 0.917*** | 0.340 | 0.421 | |||
根冠比 Root:shoot ratio | 1 | 0.187 | -0.339 | 0.227 | -0.720** | -0.032 | -0.518* | ||||
叶茎比 Leaf:stem ratio | 1 | -0.206 | 0.223 | -0.234 | 0.092 | -0.217 | |||||
叶干物质含量 LDMC | 1 | -0.902*** | 0.271 | -0.087 | 0.316 | ||||||
比叶面积 SLA | 1 | -0.121 | 0.285 | -0.370 | |||||||
叶片氮含量 N concentration | 1 | 0.282 | 0.535* | ||||||||
叶片磷含量 P concentration | 1 | -0.636** | |||||||||
氮磷比 N:P | 1 | ||||||||||
磷处理Phosphorus treatment | 株高 Plant height | 1 | 0.971*** | 0.953*** | -0.201 | -0.404 | 0.939*** | -0.880*** | -0.702** | -0.175 | -0.254 |
基径 Base diameter | 1 | 0.951*** | -0.058 | -0.452* | 0.908*** | -0.862*** | -0.649** | -0.154 | -0.228 | ||
生物量 Biomass | 1 | -0.099 | -0.426 | 0.919*** | -0.882*** | -0.622* | -0.131 | -0.244 | |||
根冠比 Root:shoot ratio | 1 | -0.528* | -0.221 | 0.073 | 0.425 | -0.026 | 0.265 | ||||
叶茎比 Leaf:stem ratio | 1 | -0.281 | 0.331 | 0.074 | 0.255 | -0.186 | |||||
叶干物质含量 LDMC | 1 | -0.945*** | -0.765** | -0.293 | -0.169 | ||||||
比叶面积 SLA | 1 | 0.653** | 0.350 | 0.050 | |||||||
叶片氮含量 N concentration | 1 | 0.216 | 0.385 | ||||||||
叶片磷含量 P concentration | 1 | -0.797*** | |||||||||
氮磷比 N:P | 1 |
表2 氮和磷处理下车桑子幼苗各性状间的相关性
Table 2 Correlations among growth characteristics, biomass allocation and leaf traits of Dodonaea viscosa under nitrogen and phosphorus treatments
处理 Treat | 指标 Value | 生长性状 Growth trait | 生物量分配 Biomass allocation | 叶功能性状 Leaf functional trait | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 基径 Base diameter | 生物量 Biomass | 根冠比 Root:shoot ratio | 叶茎比 Leaf:stem ratio | 叶干物质 含量 LDMC | 比叶面积 SLA | 叶片氮含量 N concentration | 叶片磷含量 P concentration | 氮磷比 N:P | ||
氮处理 Nitrogen treatment | 株高 Plant height | 1 | 0.917*** | 0.915*** | -0.848*** | -0.477* | 0.404 | -0.249 | 0.840*** | 0.180 | 0.464 |
基径 Base diameter | 1 | 0.955*** | -0.705** | -0.380 | 0.366 | -0.205 | 0.886*** | 0.301 | 0.436 | ||
生物量 Biomass | 1 | -0.773*** | -0.282 | 0.403 | -0.269 | 0.917*** | 0.340 | 0.421 | |||
根冠比 Root:shoot ratio | 1 | 0.187 | -0.339 | 0.227 | -0.720** | -0.032 | -0.518* | ||||
叶茎比 Leaf:stem ratio | 1 | -0.206 | 0.223 | -0.234 | 0.092 | -0.217 | |||||
叶干物质含量 LDMC | 1 | -0.902*** | 0.271 | -0.087 | 0.316 | ||||||
比叶面积 SLA | 1 | -0.121 | 0.285 | -0.370 | |||||||
叶片氮含量 N concentration | 1 | 0.282 | 0.535* | ||||||||
叶片磷含量 P concentration | 1 | -0.636** | |||||||||
氮磷比 N:P | 1 | ||||||||||
磷处理Phosphorus treatment | 株高 Plant height | 1 | 0.971*** | 0.953*** | -0.201 | -0.404 | 0.939*** | -0.880*** | -0.702** | -0.175 | -0.254 |
基径 Base diameter | 1 | 0.951*** | -0.058 | -0.452* | 0.908*** | -0.862*** | -0.649** | -0.154 | -0.228 | ||
生物量 Biomass | 1 | -0.099 | -0.426 | 0.919*** | -0.882*** | -0.622* | -0.131 | -0.244 | |||
根冠比 Root:shoot ratio | 1 | -0.528* | -0.221 | 0.073 | 0.425 | -0.026 | 0.265 | ||||
叶茎比 Leaf:stem ratio | 1 | -0.281 | 0.331 | 0.074 | 0.255 | -0.186 | |||||
叶干物质含量 LDMC | 1 | -0.945*** | -0.765** | -0.293 | -0.169 | ||||||
比叶面积 SLA | 1 | 0.653** | 0.350 | 0.050 | |||||||
叶片氮含量 N concentration | 1 | 0.216 | 0.385 | ||||||||
叶片磷含量 P concentration | 1 | -0.797*** | |||||||||
氮磷比 N:P | 1 |
[1] |
An H (2012). Effects of grazing disturbance on leaf traits and their interrelationships of plants in desert steppe. Chinese Journal of Applied Ecology, 23, 2991-2996.
URL PMID |
[ 安慧 (2012). 放牧干扰对荒漠草原植物叶性状及其相互关系的影响. 应用生态学报, 23, 2991-2996.]
PMID |
|
[2] | Chen SY, Lang NJ, Jia LQ, Wu LY (2006). Effects of drought stress on lipid peroxidation and activity of defense enzymes of Dodonaea viscosa, Leucaena leucocephala and Tephrosia candida seedlings. Bulletin of Botanical Research, 26, 88-92. |
[ 陈少瑜, 郎南军, 贾利强, 吴丽圆 (2006). 干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响. 植物研究, 26, 88-92.] | |
[3] | Chen YS, Li LL, Zhou SB, Ou ZL (2019). The differentiation of plant functional traits in genus Lysimachia L. Chinese Journal of Ecology, 38, 1653-1661. |
[ 陈延松, 李玲玲, 周守标, 欧祖兰 (2019). 珍珠菜属植物功能性状的趋异分化. 生态学杂志, 38, 1653-1661.] | |
[4] | da Silva EC, Nogueira RJMC, da Silva MA, de Albuquerque MB (2011). Drought stress and plant nutrition. Plant Stress, 5, 32-41. |
[5] |
Devau N, Le Cadre E, Hinsinger P, Gérard F (2010). A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Annals of Botany, 105, 1183-1197.
URL PMID |
[6] | Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259, 59-69. |
[7] | Gao J, Wang JN, Xu B, Xie Y, He JD, Wu Y (2016). Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow. Chinese Journal of Plant Ecology, 40, 775-787. |
[ 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦 (2016). 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究. 植物生态学报, 40, 775-787.] | |
[8] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[9] | Güsewell S, Bollens U (2003). Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic and Applied Ecology, 4, 453-466. |
[10] | Han X, Tsunekawa A, Tsubo M, Shao H (2013). Responses of plant-soil properties to increasing N deposition and implications for large-scale eco-restoration in the semiarid grassland of the northern Loess Plateau, China. Ecological Engineering, 60, 1-9. |
[11] | Hoagland DR, Arnon DI (1938). The Water Culture Method for Growing Plants Without Soil. California Agricultural Experiment Station, 347, 1-37. [2020-06-18]. https:// www.researchgate.net/file.PostFileLoader.html?id=54aefd7ed4c118b6358b45db&assetKey=AS%3A273668901408776%401442259158553. |
[12] | Huang D, Wang DM, Ren Y, Qin YB, Wu LC (2017). Responses of leaf traits to submergence stress and analysis of the economic spectrum of plant species in an aquatic- terrestrial ecotone, the Li River. Acta Ecologica Sinica, 37, 750-759. |
[ 黄端, 王冬梅, 任远, 覃云斌, 吴林川 (2017). 漓江水陆交错带植物叶性状对水淹胁迫的响应及经济谱分析. 生态学报, 37, 750-759.] | |
[13] | Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ, Laughlin DC (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374-385. |
[14] | Lai XH, Wang HY, Zhong YH, Lin L, Li MY (2019). The impact of short-term NO2 pollution on leaf functional traits of nine landscape plant species. Acta Ecologica Sinica, 39, 8058-8067. |
[ 赖小红, 王海洋, 钟雨航, 林立, 李名扬 (2019). 人工控制条件下9种园林植物叶功能性状对短期NO2污染的响应. 生态学报, 39, 8058-8067.] | |
[15] | Leng HN, Chen YT, Rao LB, Duan HP (2009). Effects of N rate on seedling growth and uptake and utilization of nitrogen and phosphorus in different provenances of Liquidambar formosana Hance. Journal of Soil and Water Conservation, 23, 79-84. |
[ 冷华妮, 陈益泰, 饶龙兵, 段红平 (2009). 供氮水平对枫香种源幼苗生长及氮、磷吸收利用的影响. 水土保持学报, 23, 79-84.] | |
[16] | Li JY, Jia LQ, Lang NJ, Chen SY, Wu LY (2003). Characteristics of photosynthesis of Dodonaea viscosa in the dry-hot valley of Jinsha River. Journal of Beijing Forestry University, 25(5), 20-24. |
[ 李吉跃, 贾利强, 郎南军, 陈少瑜, 吴丽圆 (2003). 金沙江干热河谷坡柳的光合特性. 北京林业大学学报, 25(5), 20-24.] | |
[17] | Li QY, Zhao WZ (2006). Seedling emergence and growth responses of five desert species to sand burial depth. Acta Ecologica Sinica, 26, 1802-1808. |
[ 李秋艳, 赵文智 (2006). 五种荒漠植物幼苗出土及生长对沙埋深度的响应. 生态学报, 26, 1802-1808.] | |
[18] | Li T, Li LF, Sha T, Zhang HB, Zhao ZW (2010). Molecular diversity of arbuscular mycorrhizal fungi associated with two dominant xerophytes in a valley-type savanna, southwest China. Applied Soil Ecology, 44, 61-66. |
[19] | Lin WQ, Cai JH, Xue L (2019). Responses of Cinnamomum camphora seedling growth and leaf traits to additions of nitrogen and phosphorous under different planting densities. Acta Ecologica Sinica, 39, 6738-6744. |
[ 林婉奇, 蔡金桓, 薛立 (2019). 不同密度樟树(Cinnamomum camphora)幼苗生长和叶片性状对氮磷添加的响应. 生态学报, 39, 6738-6744.] | |
[20] | Mayor JR, Wright SJ, Turner BL (2014). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44. |
[21] | Mccarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720. |
[22] |
Menge DNL, Hedin LO, Pacala SW (2012). Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. PLOS ONE, 7, e42045. DOI: 10. 1371/journal.pone.0042045.
URL PMID |
[23] | Minden V, Venterink HO (2019). Plant traits and species interactions along gradients of N, P and K availabilities. Functional Ecology, 33, 1611-1626. |
[24] | Ning ZY, Li YL, Yang HL, Zhang ZQ (2019). Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 43, 46-54. |
[ 宁志英, 李玉霖, 杨红玲, 张子谦 (2019). 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 43, 46-54.] | |
[25] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149. |
[26] | Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751. |
[27] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[28] | Qi J, Ma KM, Zhang YX (2009). Leaf-trait relationships of Quercus liaotungensis along an altitudinal gradient in Dongling Mountain, Beijing. Ecological Research, 24, 1243-1250. |
[29] |
Reich PB, Oleksyn J, Wright IJ (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross- biome analysis of 314 species. Oecologia, 160, 207-212.
DOI URL PMID |
[30] | Smith SE, Smith FA (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250. |
[31] | Smith SE, Smith FA, Jakobsen I (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162, 511-524. |
[32] | Song YT, Zhou DW, Li Q, Wang P, Huang YX (2012). Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology, 36, 222-230. |
[ 宋彦涛, 周道玮, 李强, 王平, 黄迎新 (2012). 松嫩草地80种草本植物叶片氮磷化学计量特征. 植物生态学报, 36, 222-230.] | |
[33] |
Sullivan BW, Alvarez-Clare S, Castle SC, Porder S, Reed SC, Schreeg L, Townsend AR, Cleveland CC (2014). Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology, 95, 668-681.
DOI URL PMID |
[34] | Venterink HO, Güsewell S (2010). Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Functional Ecology, 24, 877-886. |
[35] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[36] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
URL PMID |
[37] | Wang FP, Shi GX, Nicholas O, Yao BQ, Ji MF, Wang WY, Ma Z, Zhou HK, Zhao XQ (2018). Ecosystem nitrogen retention is regulated by plant community trait interactions with nutrient status in an alpine meadow. Journal of Ecology, 106, 1570-1581. |
[38] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
URL PMID |
[39] | Wright JP, Sutton-Grier A (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology, 26, 1390-1398. |
[40] | Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. |
[ 吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.] | |
[41] |
Xing W, Wu HP, Shi Q, Hao BB, Liu H, Wang ZX, Liu GH (2015). Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China). Scientific Reports, 5, 10186. DOI: 10.1038/srep10186.
URL PMID |
[42] | Xiong J, Xing WL, Yu MK, Cheng XR (2019). Variations in leaf traits of native and introduced tree species in Cunninghamia lanceolata plantations. Acta Ecologica Sinica, 39, 1897-1907. |
[ 熊静, 邢文黎, 虞木奎, 成向荣 (2019). 杉木人工林下原生与引入树种叶性状变异特征. 生态学报, 39, 1897-1907.] | |
[43] | Xu ZW, Li MH, Zimmermann NE, Li SP, Li H, Ren HY, Sun H, Han XG, Jiang Y, Jiang L (2018). Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 106, 1941-1951. |
[44] | Yahdjian L, Gherardi L, Sala OE (2011). Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. Journal of Arid Environments, 75, 675-680. |
[45] | Yan BG, He GX, Li JC, Ji ZH (2012). Scaling relationships and stoichiometry of plant leaf biogenic elements from the arid-hot valley of Jinsha River, China. Chinese Journal of Plant Ecology, 36, 1136-1144. |
[ 闫帮国, 何光熊, 李纪潮, 纪中华 (2012). 金沙江干热河谷地区植物叶片中各生源要素的化学计量特征以及异速增长关系. 植物生态学报, 36, 1136-1144.] | |
[46] | Yan BG, Ji ZH, Fan B, Wang XM, He GX, Shi LT, Liu GC (2016). Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland. New Phytologist, 211, 1232-1240. |
[47] | Yan ZB, Kim N, Han WX, Guo YL, Han TS, Du EZ, Fang JY (2015). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388, 147-155. |
[48] | Yu HY, Chen YT, Xu ZZ, Zhou GS (2014). Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38, 1029-1040. |
[ 于鸿莹, 陈莹婷, 许振柱, 周广胜 (2014). 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析. 植物生态学报, 38, 1029-1040.] | |
[49] |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
URL PMID |
[50] |
Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.
URL PMID |
[51] | Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, Yang YH (2019). Trait identity and functional diversity co-drive response of ecosystem productivity to nitrogen enrichment. Journal of Ecology, 107, 2402-2414. |
[52] | Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270. |
[53] | Zhang Q, Liu LW, Li JQ, Wang CH (2016). Characteristics of Dodonaea viscosa population regenerated in abandoned cropland of Yunnan dry-hot valleys. Southwest China Journal of Agricultural Sciences, 29, 2234-2238. |
[ 张琴, 刘利文, 李俊清, 王传华 (2016). 云南干热河谷区裸地植被恢复过程中车桑子的种群特征. 西南农业学报, 29, 2234-2238.] | |
[54] | Zhang YD, Shen YX, Liu WY (2004). Fertilization effects of N, P on a grass community at the dryvalley of Jinsha River. Bulletin of Botanical Research, 24, 59-64. |
[ 张彦东, 沈有信, 刘文耀 (2004). 金沙江干旱河谷退化草地群落对氮磷施肥的反应. 植物研究, 24, 59-64.] | |
[55] | Zhang YP, Zhao FX, Liu XX, Zheng YX, He B, Wei Y (2005). Relationship between growth increment of Azadirachta indica and site condition in hot and arid valley. Forest Research, 18, 74-79. |
[ 张燕平, 赵粉侠, 刘秀贤, 郑益兴, 贺斌, 韦宇 (2005). 干热河谷印楝生长与立地条件关系. 林业科学研究, 18, 74-79.] | |
[56] | Zhou GX, Huang LX, Zang XW, Wei X, Ye WH, Shen H (2016). Effects of habitat heterogeneity on community functional diversity of Dinghu Mountain evergreen broad- leaved forest. Guihaia, 36, 127-136. |
[ 周光霞, 黄立新, 臧晓蔚, 韦霄, 叶万辉, 沈浩 (2016). 生境异质性对鼎湖山常绿阔叶林群落功能多样性的影响. 广西植物, 36, 127-136.] | |
[57] | Zhou JH, Cheng XR, Yu MK, Zhuge JJ (2015). Responses of growth, leaf traits and biomass allocation of Phoebe sheareri seedlings to different habitats in forest gap. Journal of Northeast Forestry University, 43(12), 21-24. |
[ 周俊宏, 成向荣, 虞木奎, 诸葛建军 (2015). 紫楠幼苗生长、叶性状和生物量分配对林窗不同生境的响应. 东北林业大学学报, 43(12), 21-24.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[3] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[4] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[6] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[7] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[8] | 周玮, 李洪波, 曾辉. 西藏高寒草原群落植物根系属性在降水梯度下的变异格局[J]. 植物生态学报, 2018, 42(11): 1094-1102. |
[9] | 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559-569. |
[10] | 王雪梅, 闫帮国, 赵广, 史亮涛, 刘刚才, 方海东. 云南元谋不同海拔土壤微生物对车桑子碳、氮、磷化学计量特征及土壤特性的影响[J]. 植物生态学报, 2017, 41(3): 311-324. |
[11] | 郭京衡, 曾凡江, 李尝君, 张波. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36-44. |
[12] | 叶学华,胡宇坤,刘志兰,高树琴,董鸣. 水分异质性影响两种根茎型克隆植物赖草和假苇拂子茅的水分存储能力[J]. 植物生态学报, 2013, 37(5): 427-435. |
[13] | 刘洋,张健,陈亚梅,陈磊,刘强. 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响[J]. 植物生态学报, 2013, 37(10): 933-941. |
[14] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[15] | 闫帮国, 何光熊, 李纪潮, 纪中华. 金沙江干热河谷地区植物叶片中各生源要素的化学计量特征以及异速增长关系[J]. 植物生态学报, 2012, 36(11): 1136-1144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19