植物生态学报 ›› 2012, Vol. 36 ›› Issue (11): 1136-1144.DOI: 10.3724/SP.J.1258.2012.01136
所属专题: 生态化学计量
收稿日期:
2012-06-11
修回日期:
2012-09-04
出版日期:
2012-06-11
发布日期:
2012-11-09
通讯作者:
纪中华
作者简介:
(E-mail: rjsjzh@163.com)YAN Bang-Guo, HE Guang-Xiong, LI Ji-Chao, JI Zhong-Hua*()
Received:
2012-06-11
Revised:
2012-09-04
Online:
2012-06-11
Published:
2012-11-09
Contact:
JI Zhong-Hua
摘要:
植物生源要素的化学计量比在生物地球化学循环以及植物生理代谢中具有极为重要的作用。迄今为止, 对植物叶片的N、P元素与其他生源要素含量间相关关系的研究较少, 限制了生态化学计量学的应用广度。为了解金沙江干热河谷地区植物叶片中各种生源要素间的异速增长关系, 该研究通过对当地51个样方中107个样本的测量, 探索个体水平、物种水平和样方水平上各生源要素间的异速增长关系。结果显示: 叶片中各元素的比例N:P:K:S:Fe:Ca为100.00:6.64:88.20:11.59:2.48:91.64, N、P含量分别为11.21和0.744 mg·g -1, 明显低于全国平均值, 而N:P与全国平均值相当, 表明植物生长受到N、P的双重限制。各种生源要素间存在正相关增长关系, 在个体水平上, 植物叶片中N-P大致呈等速增长关系, Fe与Ca元素相对于N、P、K的增长速率显著大于1, Fe的增长速率最大, 依次为Fe > Ca > P > N > S > K; 物种水平上Fe与Ca相对于N、P、K的增长速率显著大于1; 样方水平上, Fe元素相对于N、P、K的增长速率依旧显著大于1, 但Ca、S相对于N的增长速率显著大于1, 元素增长速率为Fe > Ca > P > S > K > N, 其中N相对于P的异速增长斜率与2/3极为接近, K相对于P的异速增长斜率接近3/4。个体水平和样方水平上各种元素间的相关关系以及拟合优度不一致, 表明群落构建在介导不同层次上元素关系中发挥着重要作用。
闫帮国, 何光熊, 李纪潮, 纪中华. 金沙江干热河谷地区植物叶片中各生源要素的化学计量特征以及异速增长关系. 植物生态学报, 2012, 36(11): 1136-1144. DOI: 10.3724/SP.J.1258.2012.01136
YAN Bang-Guo, HE Guang-Xiong, LI Ji-Chao, JI Zhong-Hua. Scaling relationships and stoichiometry of plant leaf biogenic elements from the arid-hot valley of Jinsha River, China. Chinese Journal of Plant Ecology, 2012, 36(11): 1136-1144. DOI: 10.3724/SP.J.1258.2012.01136
斜率 Slope | P | N | K | S | Fe | Ca |
---|---|---|---|---|---|---|
P | 0.641 (0.518-0.792)|0.45 | 0.819 (0.625-1.072)|0.10 | 0.880 (0.666-1.162)|0.03 | 1.673 (1.337-2.093)|0.38 | 1.600 (1.217-2.102)|0.06 | |
N | 0.912 (0.784-1.061)|0.38 | 1.278 (0.969-1.685)|0.05 | 1.373 ( 1.064-1.772)|0.19 | 2.611 (2.076-3.283)|0.35 | 2.497 (1.961-3.180)|0.28 | |
K | 0.861 (0.721-1.029)|0.14 | 0.944 (0.787-1.133)|0.32 | -1.074 (-1.418- -0.814)|0.04 | 2.043 (1.586-2.632)|0.21 | 1.954 (1.476-2.588)|0.02 | |
S | 0.964 (0.721-1.037)|0.32 | 0.948 (0.793-1.133)|0.14 | 1.004 (0.829-1.216)|0.01 | -1.902 (-2.521- -1.435)|0.01 | 1.819 (1.371-2.414)|0.00 | |
Fe | 2.169 (1.830-2.572)|0.22 | 2.379 (2.015-2.809)|0.26 | 2.519 (2.087-3.042)|0.04 | 2.509 (2.073-3.037)|0.02 | 0.956 (0.740-1.236)|0.18 | |
Ca | 1.902 (1.587-2.280)|0.11 | 2.086 (1.777-2.449)|0.31 | 2.209 (1.830-2.667)|0.04 | 2.200 (1.816-2.666)|0.00 | 0.877 (0.737-1.043)|0.19 |
表1 植物叶片生源要素间的异速增长关系
Table 1 Scaling relation between leaf element concentrations
斜率 Slope | P | N | K | S | Fe | Ca |
---|---|---|---|---|---|---|
P | 0.641 (0.518-0.792)|0.45 | 0.819 (0.625-1.072)|0.10 | 0.880 (0.666-1.162)|0.03 | 1.673 (1.337-2.093)|0.38 | 1.600 (1.217-2.102)|0.06 | |
N | 0.912 (0.784-1.061)|0.38 | 1.278 (0.969-1.685)|0.05 | 1.373 ( 1.064-1.772)|0.19 | 2.611 (2.076-3.283)|0.35 | 2.497 (1.961-3.180)|0.28 | |
K | 0.861 (0.721-1.029)|0.14 | 0.944 (0.787-1.133)|0.32 | -1.074 (-1.418- -0.814)|0.04 | 2.043 (1.586-2.632)|0.21 | 1.954 (1.476-2.588)|0.02 | |
S | 0.964 (0.721-1.037)|0.32 | 0.948 (0.793-1.133)|0.14 | 1.004 (0.829-1.216)|0.01 | -1.902 (-2.521- -1.435)|0.01 | 1.819 (1.371-2.414)|0.00 | |
Fe | 2.169 (1.830-2.572)|0.22 | 2.379 (2.015-2.809)|0.26 | 2.519 (2.087-3.042)|0.04 | 2.509 (2.073-3.037)|0.02 | 0.956 (0.740-1.236)|0.18 | |
Ca | 1.902 (1.587-2.280)|0.11 | 2.086 (1.777-2.449)|0.31 | 2.209 (1.830-2.667)|0.04 | 2.200 (1.816-2.666)|0.00 | 0.877 (0.737-1.043)|0.19 |
图1 植物个体水平上叶片中各生源要素含量间的相关关系。标有回归线的显著相关(p < 0.05)。Fe、K、N、P、S, 各元素含量。
Fig. 1 Relationships between leaf biogenetic elements at individual level. Regression lines indicate significant relationship (p < 0.05). Fe, K, N, P, S, content of each element.
图2 物种水平上叶片各生源要素含量间的相关关系。标有回归线的显著相关(p < 0.05)。Fe、K、N、P、S, 各元素含量。
Fig. 2 Relationships between leaf biogenetic elements at species level. Regression lines indicate significant relationship (p < 0.05). Fe, K, N, P, S, content of each element.
图3 样方水平上叶片各生源要素含量间的相关关系。标有回归线的显著相关(p < 0.05)。Fe、K、N、P、S, 各元素含量。
Fig. 3 Relationships between leaf biogenetic elements at plot level. Regression lines indicate significant relationship (p < 0.05). Fe, K, N, P, S, content of each element.
物种 Species | S (mg·g-1) | P (mg·kg-1) | K (mg·g-1) | Ca (mg·g-1) | Fe (mg·kg-1) | N (mg·g-1) |
---|---|---|---|---|---|---|
橘草 Cymbopogon goeringii | 1.57 | 632.00 | 9.59 | 8.07 | 192.84 | 10.79 |
孔颖草 Bothriochloa pertusa | 1.30 | 945.15 | 11.90 | 6.73 | 327.69 | 11.02 |
黄茅 Heteropogon contortus | 1.24 | 539.80 | 5.58 | 4.33 | 149.13 | 8.58 |
独穗飘拂草 Fimbristylis monostachya | 1.34 | 740.22 | 12.42 | 3.52 | 276.38 | 8.52 |
双花草 Dichanthium annulatum | 0.98 | 663.67 | 8.51 | 5.57 | 194.52 | 8.42 |
假杜鹃 Barleria cristata | 0.97 | 896.00 | 15.00 | 47.33 | 506.17 | 16.54 |
拟金茅 Eulaliopsis binata | 0.66 | 490.60 | 10.06 | 4.66 | 199.41 | 7.80 |
白灰毛豆 Tephrosia candida | 1.41 | 857.20 | 11.95 | 15.77 | 225.40 | 27.53 |
刺芒野古草 Arundinella setosa | 2.78 | 471.75 | 8.14 | 5.45 | 115.80 | 7.70 |
蔓草虫豆 Cajanus scarabaeoides var. scarabaeoides | 1.29 | 1040.00 | 13.04 | 9.22 | 535.25 | 20.28 |
茅叶荩草 Arthraxon prionodes | 1.36 | 845.75 | 7.46 | 16.20 | 259.00 | 10.65 |
裂稃草 Schizachyrium brevifolium | 0.96 | 473.50 | 5.64 | 4.57 | 212.50 | 7.30 |
扁穗莎草 Cyperus compressus | 1.69 | 773.00 | 6.44 | 4.54 | 106.00 | 10.15 |
叶下珠 Phyllanthus urinaria | 2.01 | 1437.00 | 10.15 | 9.93 | 599.67 | 14.50 |
垫状卷柏 Selaginella pulvinata | 1.34 | 791.00 | 4.49 | 1.71 | 832.00 | 14.30 |
三芒草 Aristida adscensionis | 1.12 | 1750.00 | 7.89 | 3.85 | 757.00 | 11.50 |
西南飘拂草 Fimbristylis thomsonii | 3.44 | 924.00 | 21.00 | 6.95 | 93.20 | 8.10 |
大叶千斤拔 Flemingia macrophylla | 1.14 | 1310.00 | 9.50 | 9.28 | 1241.00 | 17.30 |
单叶木蓝 Indigofera linifolia | 1.01 | 1043.50 | 6.03 | 84.60 | 521.50 | 15.30 |
白背黄花稔 Sida rhombifolia | 1.30 | 1648.00 | 14.90 | 10.60 | 498.00 | 17.70 |
丁癸草 Zornia gibbosa | 1.71 | 832.10 | 13.80 | 10.80 | 608.00 | 24.30 |
棕茅 窗体顶端 Eulalia phaeothrix 窗体底端 | 1.33 | 501.00 | 7.87 | 6.25 | 152.67 | 7.80 |
四脉金茅 Eulalia quadrinervis | 0.87 | 438.50 | 12.25 | 4.04 | 127.10 | 7.20 |
附表1 物种信息以及叶片元素含量
Appendix table 1 Species information and leaf elemental concentration
物种 Species | S (mg·g-1) | P (mg·kg-1) | K (mg·g-1) | Ca (mg·g-1) | Fe (mg·kg-1) | N (mg·g-1) |
---|---|---|---|---|---|---|
橘草 Cymbopogon goeringii | 1.57 | 632.00 | 9.59 | 8.07 | 192.84 | 10.79 |
孔颖草 Bothriochloa pertusa | 1.30 | 945.15 | 11.90 | 6.73 | 327.69 | 11.02 |
黄茅 Heteropogon contortus | 1.24 | 539.80 | 5.58 | 4.33 | 149.13 | 8.58 |
独穗飘拂草 Fimbristylis monostachya | 1.34 | 740.22 | 12.42 | 3.52 | 276.38 | 8.52 |
双花草 Dichanthium annulatum | 0.98 | 663.67 | 8.51 | 5.57 | 194.52 | 8.42 |
假杜鹃 Barleria cristata | 0.97 | 896.00 | 15.00 | 47.33 | 506.17 | 16.54 |
拟金茅 Eulaliopsis binata | 0.66 | 490.60 | 10.06 | 4.66 | 199.41 | 7.80 |
白灰毛豆 Tephrosia candida | 1.41 | 857.20 | 11.95 | 15.77 | 225.40 | 27.53 |
刺芒野古草 Arundinella setosa | 2.78 | 471.75 | 8.14 | 5.45 | 115.80 | 7.70 |
蔓草虫豆 Cajanus scarabaeoides var. scarabaeoides | 1.29 | 1040.00 | 13.04 | 9.22 | 535.25 | 20.28 |
茅叶荩草 Arthraxon prionodes | 1.36 | 845.75 | 7.46 | 16.20 | 259.00 | 10.65 |
裂稃草 Schizachyrium brevifolium | 0.96 | 473.50 | 5.64 | 4.57 | 212.50 | 7.30 |
扁穗莎草 Cyperus compressus | 1.69 | 773.00 | 6.44 | 4.54 | 106.00 | 10.15 |
叶下珠 Phyllanthus urinaria | 2.01 | 1437.00 | 10.15 | 9.93 | 599.67 | 14.50 |
垫状卷柏 Selaginella pulvinata | 1.34 | 791.00 | 4.49 | 1.71 | 832.00 | 14.30 |
三芒草 Aristida adscensionis | 1.12 | 1750.00 | 7.89 | 3.85 | 757.00 | 11.50 |
西南飘拂草 Fimbristylis thomsonii | 3.44 | 924.00 | 21.00 | 6.95 | 93.20 | 8.10 |
大叶千斤拔 Flemingia macrophylla | 1.14 | 1310.00 | 9.50 | 9.28 | 1241.00 | 17.30 |
单叶木蓝 Indigofera linifolia | 1.01 | 1043.50 | 6.03 | 84.60 | 521.50 | 15.30 |
白背黄花稔 Sida rhombifolia | 1.30 | 1648.00 | 14.90 | 10.60 | 498.00 | 17.70 |
丁癸草 Zornia gibbosa | 1.71 | 832.10 | 13.80 | 10.80 | 608.00 | 24.30 |
棕茅 窗体顶端 Eulalia phaeothrix 窗体底端 | 1.33 | 501.00 | 7.87 | 6.25 | 152.67 | 7.80 |
四脉金茅 Eulalia quadrinervis | 0.87 | 438.50 | 12.25 | 4.04 | 127.10 | 7.20 |
1 |
Ågren GI ( 2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics, 39, 153-170.
DOI URL |
2 |
Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO ( 2009). Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience, 2, 42-45.
DOI URL |
3 |
Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, Laroche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J ( 2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695-702.
DOI URL |
4 |
Clark CM, Tilman D ( 2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
DOI URL |
5 |
Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252.
DOI URL |
6 |
Deutsch C, Weber T ( 2012). Nutrient ratios as a tracer and driver of ocean biogeochemistry. Annual Review of Marine Science, 4, 113-141.
DOI URL |
7 |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW ( 2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
8 |
Elser JJ, Acquisti C, Kumar S ( 2011). Stoichiogenomics: the evolutionary ecology of macromolecular elemental composition. Trends in Ecology and Evolution, 26, 38-44.
DOI URL |
9 |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry. BioScience, 46, 674-684.
DOI URL |
10 |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ ( 2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI URL |
11 |
Elser JJ, Urabe J ( 1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and conse- quences. Ecology, 80, 735-751.
DOI URL |
12 |
Gleeson SK, Good RE ( 2003). Root allocation and multiple nutrient limitation in the New Jersey pinelands. Ecology Letters, 6, 220-227.
DOI URL |
13 |
Güsewell S, Gessner MO ( 2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219.
DOI URL |
14 |
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH ( 2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI URL |
15 |
He JS, Flynn DFB, Wolfe-Bellin K, Fang J, Bazzaz FA ( 2005). CO2 and nitrogen, but not population density, alter the size and C/N ratio of Phytolacca americana seeds. Functional Ecology, 19, 437-444.
DOI URL |
16 |
He JS ( 贺金生), Han XG ( 韩兴国 ) ( 2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology (植物生态学报), 34, 2-6. (in Chinese with English abstract)
DOI URL |
17 |
Joern A, Provin T, Behmer ST ( 2011). Not just the usual suspects: insect herbivore populations and communities are associated with multiple plant nutrients. Ecology, 93, 1002-1015.
DOI URL |
18 |
Kerkhoff AJ, Enquist BJ ( 2006). Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427.
DOI URL |
19 |
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ ( 2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122.
DOI URL |
20 | Koerselman W, Meuleman AFM ( 1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
21 |
Langley JA, Megonigal JP ( 2010). Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature, 466, 96-99.
DOI URL |
22 |
Loladze I, Elser JJ ( 2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14, 244-550.
DOI URL |
23 |
Ma JF, Yamaji N ( 2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11, 392-397.
DOI URL |
24 | O’Hara GW, Dilworth MJ, Boonkerd N, Parkpian P ( 1988). Iron-deficiency specifically limits nodule development in peanut inoculated with Bradyrhizobium sp. New Phyto- logist, 108, 51-57. |
25 | Redfield AC (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ ed. James Johnstone Memorial. Liverpool University Press, Liverpool, UK. |
26 | Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
27 |
Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ ( 2010). Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 277, 877-883.
DOI URL |
28 | Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J ( 2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 4181-4186. |
29 |
Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ ( 2001). Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature, 411, 66-69.
DOI URL |
30 |
Smith RJ ( 2009). Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology, 140, 476-486.
DOI URL |
31 | Sokal RR, Rohlf FJ ( 1995). Biometry: the Principles and Practice of Statistics in Biological Research 3rd edn. Freeman, New York. |
32 | Sterner RW, Elser JJ, Vitousek P (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
33 | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S ( 2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
34 |
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS ( 2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
35 | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton. |
36 |
Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T ( 2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science, 300, 958-961.
DOI URL |
37 |
Vanni MJ, Flecker AS, Hood JM, Headworth JL ( 2002). Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters, 5, 285-293.
DOI URL |
38 | Yan ER ( 阎恩荣), Wang XH ( 王希华), Zhou W ( 周武 ) ( 2008). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad- leaved forests in the Tiantong region, Zhejiang Province, eastern China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 13-22. (in Chinese with English abstract) |
39 |
Yang YH, Luo YQ, Lu M, Schädel C, Han WX ( 2011). Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant and Soil, 343, 393-400.
DOI URL |
40 |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG ( 2010). Linking stoichiometric homo- eostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI URL |
41 |
Yu Q, Elser J, He NP, Wu HH, Chen QS, Zhang GM, Han XG ( 2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.
DOI URL |
42 | Zhang JP ( 张建平), Wang DJ ( 王道杰), Wang YK ( 王玉宽), Wen AB ( 文安邦 ) ( 2000). Discusses on eco-environment changes in dry-hot valley of Yuanmou. Scientia Geogra- phica Sinica (地理科学), 20, 148-152. (in Chinese with English abstract) |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[6] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[7] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[8] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[9] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[10] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[11] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[12] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[13] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[14] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[15] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19