植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 922-931.DOI: 10.17521/cjpe.2022.0105
所属专题: 全球变化与生态系统; 生态化学计量; 青藏高原植物生态学:生态系统生态学; 生物地球化学
收稿日期:
2022-03-25
接受日期:
2022-07-15
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*张法伟(作者简介:
ORCID: 张法伟: 0000-0003-0693-7956
基金资助:
LI Hong-Qin1,2,3, ZHANG Fa-Wei2,3,4,*(), YI Lü-Bei5
Received:
2022-03-25
Accepted:
2022-07-15
Online:
2023-07-20
Published:
2023-07-21
Contact:
*ZHANG Fa-Wei(Supported by:
摘要:
降水格局改变和氮沉降增加是草地生态系统结构及功能演变的重要影响因素, 其对高寒草甸土壤和植物的化学计量的影响存在很大变异, 限制了对高寒草甸生态功能预测的准确性。该研究基于祁连山东段南麓高寒草甸降水改变(减雨50%和增雨50%)和氮添加(10 g·m-2·a-1)的控制实验平台, 分析了2017-2020年表层(0-10 cm)土壤有机碳、全氮、全磷含量和优势植物麻花艽(Gentiana straminea)、垂穗披碱草(Elymus nutans)、黄花棘豆(Oxytropis ochrocephala)和矮生嵩草(Kobresia humilis)的叶片碳(LC)、氮(LN)、磷(LP)和钾(LK)含量等变化, 以明晰土壤和植物的化学计量特征对降水改变和氮添加的响应。结果表明, 土壤化学计量特征的变异存在显著年际效应, 与实验处理无显著关系。地上活体生物量(PB)存在显著的年际差异, 并受到氮添加的显著影响。优势物种叶片化学计量特征的变异因物种而异。垂穗披碱草叶片化学计量特征的变化均不显著, 属于资源保守型物种, 而矮生嵩草的变化显著, 敏感性较强。基于处理样地与对照样地每年指标相对变化(Δ)的分析表明, 氮添加显著提高了ΔPB达15.6%。降水减少显著降低了黄花棘豆ΔLC达6.8%, 增加了矮生嵩草ΔLP达19.8%。研究表明仅氮添加提高了PB, 降水减少改变了部分物种LC和LP含量, 土壤和植物叶片的化学计量特征变异的年际效应或物种效应大于实验处理效应, 凸显了高寒草甸生态系统对降水改变和氮添加响应的复杂性。
李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应. 植物生态学报, 2023, 47(7): 922-931. DOI: 10.17521/cjpe.2022.0105
LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow. Chinese Journal of Plant Ecology, 2023, 47(7): 922-931. DOI: 10.17521/cjpe.2022.0105
图1 海北高寒草甸实验小区布置示意图。+50%, 降水增加50%; -50%, 降水减少50%; CK, 对照; E, 微生物肥添加; K, 钾添加; N, 氮添加; N+50%, 氮添加及降水增加50%; N-50%, 氮添加及降水减少50%; NK, 氮钾添加; NP, 氮磷添加; NPK, 氮磷钾添加; NPK+50%, 氮磷钾添加及降水增加50%; NPK-50%, 氮磷钾添加及降水减少50%; NPK+E, 氮磷钾+微生物肥添加; P, 磷添加; PK, 磷钾添加。
Fig. 1 Layout of experiment plots of the alpine meadow in Haibei Station. +50%, rainfall enrichment by 50%; -50%, rainfall reduction by 50%; CK, control check; E, microorganism addition; K, potassium addition; N, nitrogen addition; N+50%, N and rainfall enrichment by 50%; N-50%, N and rainfall reduction by 50%; NK, N and K; NP, N and phosphorus addition; NPK, N, P, and K; NPK+50%, N, P, and K and rainfall enrichment by 50%; NPK-50%, N, P, K and rainfall reduction by 50%; NPK+E, N, P, K and microorganism addition; PK, P and K.
处理 Treatment | SOC | SN | SP | SOC:SN | SOC:SP | SN:SP | PB |
---|---|---|---|---|---|---|---|
年份 Year | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
降水改变 Rain | 0.24 | 0.23 | 0.67 | 0.85 | 0.76 | 0.79 | 0.23 |
氮添加 N | 0.59 | 0.69 | 0.50 | 0.40 | 0.76 | 0.88 | 0.01 |
年份×降水改变 Year × Rain | 0.08 | 0.35 | 0.72 | 0.08 | 0.32 | 0.74 | 0.99 |
年份×氮添加 Year × N | 0.85 | 0.62 | 0.74 | 0.78 | 0.86 | 0.90 | 0.02 |
降水改变×氮添加 Rain × N | 0.04 | 0.19 | 0.18 | 0.42 | 0.97 | 0.98 | 0.54 |
表1 降水改变和氮添加对海北高寒草甸土壤化学计量特征及植被地上活体生物量的混合效应模型
Table 1 Linear mixed-effect models of soil stoichiometry and aboveground plant biomass (PB) to precipitation change (Rain) and nitrogen addition (N) in an alpine meadow of Haibei Station
处理 Treatment | SOC | SN | SP | SOC:SN | SOC:SP | SN:SP | PB |
---|---|---|---|---|---|---|---|
年份 Year | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
降水改变 Rain | 0.24 | 0.23 | 0.67 | 0.85 | 0.76 | 0.79 | 0.23 |
氮添加 N | 0.59 | 0.69 | 0.50 | 0.40 | 0.76 | 0.88 | 0.01 |
年份×降水改变 Year × Rain | 0.08 | 0.35 | 0.72 | 0.08 | 0.32 | 0.74 | 0.99 |
年份×氮添加 Year × N | 0.85 | 0.62 | 0.74 | 0.78 | 0.86 | 0.90 | 0.02 |
降水改变×氮添加 Rain × N | 0.04 | 0.19 | 0.18 | 0.42 | 0.97 | 0.98 | 0.54 |
图2 海北高寒草甸表层土壤有机碳(A)、全氮(B)、全磷(C)含量和植被地上活体生物量(D)的年际差异(平均值±标准差)。不同小写字母表示差异显著(p < 0.05); 箱式图中的实心方块和横线分别为平均值和中位数。
Fig. 2 Interannual differences of topsoil organic carbon content (SOC, A), total nitrogen content (SN, B), total phosphorus content (SP, C), and aboveground plant biomass (PB, D) of the alpine meadow in Haibei Station (mean ± SD). Different lowercase letters represent significant difference (p < 0.05); solid squares and lines of boxes are mean and median values, respectively.
图3 海北高寒草甸植被地上活体生物量(A)、黄花棘豆叶片碳含量(B)、矮生嵩草叶片磷(C)及碳(D)含量的相对变化对降水改变和氮添加的响应(平均值±标准差)。不同小写字母表示差异显著(p < 0.05); 箱式图中的实心方块和横线分别为平均值和中位数。+50%, 降水增加50%; -50%, 降水减少50%; CK, 对照; N, 氮添加; N+50%, 氮添加及降水增加50%; N-50%, 氮添加及降水减少50%; Rain, 降水改变。
Fig. 3 Response of relative changes of aboveground plant biomass (ΔPB, A), leaf carbon content (ΔLC) of Oxytropis ochrocephala (B), leaf phosphorus content (ΔLP, C) and ΔLC (D) of Kobresia humilis to precipitation change (Rain) and nitrogen addition (N) of the alpine meadow in Haibei Station (mean ± SD). Different lowercase letters represent significant difference (p < 0.05); solid squares and lines of boxes are mean and median values, respectively. +50%, rainfall enrichment by 50%; -50%, rainfall reduction by 50%; CK, control check; N+50%, N addition and rainfall enrichment by 50%; N-50%, N addition and rainfall reduction by 50%.
图4 海北高寒草甸麻花艽、垂穗披碱草、黄花棘豆和矮生嵩草的叶片碳(A)、氮(B)、磷(C)和钾(D)含量的差异(平均值±标准差)。不同小写字母表示差异显著(p < 0.05); 箱式图中的实心方块和横线分别为平均值和中位数。
Fig. 4 Differences of leaf carbon content (LC, A), nitrogen content (LN, B), phosphorus content (LP, C), and potassium content (LK, D) of Gentiana straminea, Elymus nutans, Oxytropis ochrocephala, and Kobresia humilis of the alpine meadow in Haibei Station (mean ± SD). Different lowercase letters represent significant difference (p < 0.05); solid squares and line of boxes are mean and median values, respectively.
物种 Species | 化学计量 Stoichiometry | 年份 Year | Rain | N | 年份×降水改变 Year × Rain | 年份×氮添加 Year × N | Rain × N |
---|---|---|---|---|---|---|---|
麻花艽 Gentiana straminea | LC | 0.18 | 0.52 | 0.79 | 0.43 | 0.47 | 0.94 |
LN | 0.02 | 0.59 | 0.97 | 0.77 | 0.08 | 0.87 | |
LP | 0.02 | 0.79 | 0.33 | 0.41 | 0.40 | 0.18 | |
LK | 0.44 | 0.27 | 0.69 | 0.29 | 0.92 | 0.95 | |
垂穗披碱草 Elymus nutans | LC | 0.68 | 0.42 | 0.71 | 0.23 | 0.49 | 0.27 |
LN | 0.31 | 0.06 | 0.26 | 0.59 | 0.42 | 0.26 | |
LP | 0.65 | 0.69 | 0.56 | 0.90 | 0.83 | 0.89 | |
LK | 0.45 | 0.67 | 0.19 | 0.79 | 0.64 | 0.68 | |
黄花棘豆 Oxytropis ochrocephala | LC | 0.03 | 0.03 | 0.97 | 0.03 | 0.82 | 0.70 |
LN | 0.36 | 0.78 | 0.21 | 0.79 | 0.44 | 0.73 | |
LP | 0.13 | 0.99 | 0.29 | 0.71 | 0.62 | 0.96 | |
LK | 0.06 | 0.51 | 0.54 | 0.73 | 0.68 | 0.40 | |
矮生嵩草 Kobresia humilis | LC | 0.02 | 0.05 | 0.61 | 0.01 | 0.23 | 0.38 |
LN | 0.03 | 0.64 | 0.23 | 0.48 | 0.38 | 0.16 | |
LP | <0.001 | 0.02 | 0.62 | 0.34 | 0.53 | 0.53 | |
LK | <0.001 | 0.16 | 0.21 | 0.53 | 0.72 | 0.47 |
表2 降水改变(Rain)和氮添加(N)对优势植物叶片碳(LC)、氮(LN)、磷(LP)和钾(LK)含量的混合效应模型
Table 2 Linear mixed-effect models of leaf carbon (LC), nitrogen (LN), phosphor (LP), and potassium (LK) of dominant plant species to precipitation change (P) and nitrogen addition (N)
物种 Species | 化学计量 Stoichiometry | 年份 Year | Rain | N | 年份×降水改变 Year × Rain | 年份×氮添加 Year × N | Rain × N |
---|---|---|---|---|---|---|---|
麻花艽 Gentiana straminea | LC | 0.18 | 0.52 | 0.79 | 0.43 | 0.47 | 0.94 |
LN | 0.02 | 0.59 | 0.97 | 0.77 | 0.08 | 0.87 | |
LP | 0.02 | 0.79 | 0.33 | 0.41 | 0.40 | 0.18 | |
LK | 0.44 | 0.27 | 0.69 | 0.29 | 0.92 | 0.95 | |
垂穗披碱草 Elymus nutans | LC | 0.68 | 0.42 | 0.71 | 0.23 | 0.49 | 0.27 |
LN | 0.31 | 0.06 | 0.26 | 0.59 | 0.42 | 0.26 | |
LP | 0.65 | 0.69 | 0.56 | 0.90 | 0.83 | 0.89 | |
LK | 0.45 | 0.67 | 0.19 | 0.79 | 0.64 | 0.68 | |
黄花棘豆 Oxytropis ochrocephala | LC | 0.03 | 0.03 | 0.97 | 0.03 | 0.82 | 0.70 |
LN | 0.36 | 0.78 | 0.21 | 0.79 | 0.44 | 0.73 | |
LP | 0.13 | 0.99 | 0.29 | 0.71 | 0.62 | 0.96 | |
LK | 0.06 | 0.51 | 0.54 | 0.73 | 0.68 | 0.40 | |
矮生嵩草 Kobresia humilis | LC | 0.02 | 0.05 | 0.61 | 0.01 | 0.23 | 0.38 |
LN | 0.03 | 0.64 | 0.23 | 0.48 | 0.38 | 0.16 | |
LP | <0.001 | 0.02 | 0.62 | 0.34 | 0.53 | 0.53 | |
LK | <0.001 | 0.16 | 0.21 | 0.53 | 0.72 | 0.47 |
[1] |
Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH (2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 38, 231-237.
DOI URL |
[宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 (2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.]
DOI |
|
[2] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014). Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI |
[3] |
Broderick CM, Wilkins K, Smith MD, Blair JM (2022). Climate legacies determine grassland responses to future rainfall regimes. Global Change Biology, 28, 2639-2656.
DOI URL |
[4] |
Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243.
DOI URL |
[5] | Chai JL, Xu CL, Zhang DG, Xiao H, Pan TT, Yu XJ (2019). Effects of simulated trampling and rainfall on soil nutrients and enzyme activity in an alpine meadow. Acta Ecologica Sinica, 39, 333-344. |
[柴锦隆, 徐长林, 张德罡, 肖红, 潘涛涛, 鱼小军 (2019). 模拟践踏和降水对高寒草甸土壤养分和酶活性的影响. 生态学报, 39, 333-344.] | |
[6] | Chapin III FS, Matson PA, Mooney HA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer-Verlag, New York, USA. 142-145. |
[7] | Fu YW, Tian DS, Niu SL, Zhao KT (2020). Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow. Journal of Beijing Forestry University, 42(5), 115-123. |
[符义稳, 田大栓, 牛书丽, 赵垦田 (2020). 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响. 北京林业大学学报, 42(5), 115-123.] | |
[8] | He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020). Close-to-nature restoration of degraded alpine grasslands: theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. |
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020). 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.] | |
[9] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[10] | He YC, Tian DS, Wang JS, Fu YW, Wei XH, Li JW (2021). Spatial patterns and impacting factors of leaf potassium content among different functional groups of herbaceous plants across China. Journal of Beijing Forestry University, 43(8), 83-89. |
[何奕成, 田大栓, 汪金松, 符义稳, 魏学红, 李景文 (2021). 中国不同草本功能群叶片钾含量的空间格局及控制因素. 北京林业大学学报, 43(8), 83-89.] | |
[11] | Heng T, Wu JG, Xie SY, Wu MX (2011). The responses of soil C and N, microbial biomass C or N under alpine meadow of Qinghai-Tibet Plateau to the change of temperature and precipitation. Chinese Agricultural Science Bulletin, 27, 425-430. |
[衡涛, 吴建国, 谢世友, 武美香 (2011). 高寒草甸土壤碳和氮及微生物生物量碳和氮对温度与降水量变化的响应. 中国农学通报, 27, 425-430.] | |
[12] |
Jiang CM, Yu GR, Li YN, Cao GM, Yang ZP, Sheng WP, Yu WT (2012). Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecological Engineering, 44, 1-9.
DOI URL |
[13] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin-Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, et al. (2017). Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI PMID |
[14] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd ed. Springer-Verlag, Berlin Heidelberg. |
[15] |
Li HQ, Zhang FW, Li YN, Zhao XQ, Cao GM (2015). Thirty-year variations of above-ground net primary production and precipitation-use efficiency of an alpine meadow in the north-eastern Qinghai-Tibetan Plateau. Grass and Forage Science, 71, 208-218.
DOI URL |
[16] |
Li HQ, Zhu JB, Zhang FW, Qin G, Yang YS, Li YN, Wang JB, Cao GM, Li YK, Zhou HK, Du MY (2022). The predominance of nongrowing season emissions to the annual methane budget of a semiarid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecosystems, 25, 526-536.
DOI |
[17] | Li Y, Lin L, Zhu WY, Zhang ZH, He JS (2017). Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 535-544. |
[李颖, 林笠, 朱文琰, 张振华, 贺金生 (2017). 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 53, 535-544.] | |
[18] |
Liang XY, Zhang T, Lu XK, Ellsworth DS, BassiriRad H, You CM, Wang D, He PC, Deng Q, Liu H, Mo JM, Ye Q (2020). Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biology, 26, 3585-3600.
DOI PMID |
[19] | Lin L, Cao GM, Zhang FW, Ke X, Li YK, Xu XL, Li Q, Guo XW, Fan B, Du YG (2019). Spatial and temporal variations in available soil nitrogen—A case study in Kobresia alpine meadow in the Qinghai-Tibetan Plateau, China. Journal of Geoscience and Environment Protection, 7, 177-189. |
[20] | Liu GS, Jiang NH, Zhang LD (1996). Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network: Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. |
[刘光崧, 蒋能慧, 张连第 (1996). 中国生态系统研究网络观测与分析标准方法——土壤理化分析与剖面描述. 中国标准出版社, 北京.] | |
[21] |
Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[22] |
Peng JL, Ma FF, Quan Q, Chen XL, Wang JS, Yan YJ, Zhou QP, Niu SL (2022). Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow. Science of the Total Environment, 835, 155418. DOI: 10.1016/j.scitotenv.2022.155418.
DOI URL |
[23] | Shen ZX, Zhou XM, Chen ZZ, Zhou HK (2002). Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow. Acta Phytoecologica Sinica, 26, 288-294. |
[沈振西, 周兴民, 陈佐忠, 周华坤 (2002). 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 26, 288-294.] | |
[24] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI |
[宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[25] |
Wang JS, Song B, Ma FF, Tian DS, Li Y, Yan T, Quan Q, Zhang FY, Li ZL, Wang BX, Gao Q, Chen WN, Niu SL (2019). Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Functional Ecology, 33, 2239-2253.
DOI URL |
[26] | Yang CJ, Han YZ, Li ZK, Zhang DC, Wang HB, Li HL (2022). Responses of root vessel anatomical structures to drought exposure for two Kobresia species in an alpine meadow habitat in southeast Tibet. Acta Prataculturae Sinica, 31(2), 76-87. |
[杨春娇, 韩雨圳, 李忠馗, 张大才, 王洪斌, 栗宏林 (2022). 藏东南高寒草甸两种嵩草根系导管解剖结构对生境干旱化的响应. 草业学报, 31(2), 76-87.]
DOI |
|
[27] |
Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI |
|
[28] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI |
[29] |
Zhang BW, Cadotte MW, Chen SP, Tan XR, You CH, Ren TT, Chen ML, Wang SS, Li WJ, Chu CJ, Jiang L, Bai YF, Huang JH, Han XG (2019). Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 100, e2828. DOI: 10.1002/ecy.2828.
DOI |
[30] |
Zhang BW, Tan XR, Wang SS, Chen ML, Chen SP, Ren TT, Xia JY, Bai YF, Huang JH, Han XG (2017). Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semi-arid steppe. Functional Ecology, 31, 1301-1311.
DOI URL |
[31] |
Zhang L, Ni M, Zhu T, Xu X, Zhou S, Shipley B (2022). Nitrogen addition in a Tibetan alpine meadow increases intraspecific variability in nitrogen uptake, leading to increased community-level nitrogen uptake. Ecosystems, 25, 172-183.
DOI |
[32] | Zhao XQ (2009). Alpine Meadow and Global Climate Change. Science Press, Beijing. |
[赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[33] |
Zhao YF, Wang X, Jiang SL, Zhou XH, Liu HY, Xiao JJ, Hao ZG, Wang KC (2021). Climate and geochemistry interactions at different altitudes influence soil organic carbon turnover times in alpine grasslands. Agriculture, Ecosystems & Environment, 320, 107591. DOI: 10.1016/j.agee.2021.107591.
DOI URL |
[34] | Zheng D, Zhang QS, Wu SH (2000). Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic, Dordercht, the Netherlands. |
[35] |
Zong N, Shi PL, Song MH, Zhang XZ, Jiang J, Chai X (2016). Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environmental Management, 57, 531-542.
DOI PMID |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[7] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[8] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[9] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[10] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[11] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[12] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[13] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[14] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[15] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19