植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1071-1081.DOI: 10.17521/cjpe.2022.0097
所属专题: 全球变化与生态系统
收稿日期:
2022-03-17
接受日期:
2022-07-06
出版日期:
2023-08-20
发布日期:
2022-09-06
通讯作者:
*ORCID: 陈立同: 0000-0002-9797-296X,(基金资助:
ZHAO Yan-Chao1,2, CHEN Li-Tong1,*()
Received:
2022-03-17
Accepted:
2022-07-06
Online:
2023-08-20
Published:
2022-09-06
Contact:
*CHEN Li-Tong(Supported by:
摘要:
近40年来, 青藏高原经历了快速的增温, 而且预计在将来的几十年里其温度会持续上升。由于气候变暖可能引起土壤水分、养分可利用性的变化, 了解该变化是否会影响高寒草地对气候变暖的响应, 是准确预测未来气候变暖背景下高寒草地生产力变化的重要前提。基于高(4 050 m)、中(3 700 m)、低(3 200 m) 3个海拔的开顶式增温箱(OTCs)增温与施肥(氮(N)肥、磷(P)肥)野外控制实验, 该研究测定了高寒草地群落及其4种功能群(豆科、禾草、莎草、杂类草)的地上绝对和相对生物量, 探讨了高寒草地地上生物量对气候变暖的响应以及土壤养分的调节作用。结果表明: 1)增温处理的响应比与海拔之间存在显著的正相关关系。2)增温导致中、高海拔草地地上生物量的增加, 而且在N、P添加下, 增温均显著增加了3个海拔草地地上生物量。3)不同海拔的4种功能群相对生物量对增温的响应不一致, 而且同一功能群因不同的养分条件对增温表现出了显著的差异。研究表明, 高寒植物对增温的响应依赖于海拔, 并且受到土壤养分可利用性的调节。
赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用. 植物生态学报, 2023, 47(8): 1071-1081. DOI: 10.17521/cjpe.2022.0097
ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2023, 47(8): 1071-1081. DOI: 10.17521/cjpe.2022.0097
图1 被动式开顶式增温箱(OTC)示意图。A, OTC野外样地示意图。B, OTC单面示意图。
Fig. 1 Schematic of the open-top chamber (OTC). A, Schematic of OTC in sampling plots. B, Schematic of OTC on one side.
处理 Treatment | df | F | p |
---|---|---|---|
N | 1 | 33.18 | <0.001 |
P | 1 | 2.56 | 0.114 |
N × P | 1 | 1.97 | 0.167 |
W | 1 | 51.60 | <0.001 |
W × N | 1 | 1.51 | 0.223 |
W × P | 1 | 2.35 | 0.130 |
W × N × P | 1 | 1.28 | 0.261 |
Altitude | 2 | 213.74 | <0.001 |
Altitude × W | 2 | 11.73 | <0.001 |
Altitude × N | 2 | 0.28 | 0.756 |
Altitude × P | 2 | 1.55 | 0.219 |
Altitude × N × P | 2 | 0.24 | 0.787 |
Altitude × W × N | 2 | 0.17 | 0.841 |
Altitude × W × P | 2 | 2.55 | 0.085 |
Altitude × W × N × P | 2 | 0.57 | 0.566 |
表1 青海海北高寒草地海拔、增温、施肥对3个海拔地上生物量的影响
Table 1 Results of linear mixed model on the effects of altitude, warming, fertilizer and their interactions on aboveground biomass in alpine grassland of Haibei, Qinghai
处理 Treatment | df | F | p |
---|---|---|---|
N | 1 | 33.18 | <0.001 |
P | 1 | 2.56 | 0.114 |
N × P | 1 | 1.97 | 0.167 |
W | 1 | 51.60 | <0.001 |
W × N | 1 | 1.51 | 0.223 |
W × P | 1 | 2.35 | 0.130 |
W × N × P | 1 | 1.28 | 0.261 |
Altitude | 2 | 213.74 | <0.001 |
Altitude × W | 2 | 11.73 | <0.001 |
Altitude × N | 2 | 0.28 | 0.756 |
Altitude × P | 2 | 1.55 | 0.219 |
Altitude × N × P | 2 | 0.24 | 0.787 |
Altitude × W × N | 2 | 0.17 | 0.841 |
Altitude × W × P | 2 | 2.55 | 0.085 |
Altitude × W × N × P | 2 | 0.57 | 0.566 |
图2 青海海北高寒草地2021年地上生物量响应比与海拔之间的关系。○, 对照; □, 氮添加; ◇, 磷添加; △, 氮磷共同添加; 白色表示对照, 黑色表示增温。母图中拟合线表示8种处理的响应比与海拔之间的关系(p < 0.05, R2 = 0.06), 左上角子图中拟合线表示单独增温与海拔之间的关系(p < 0.05, R2 = 0.39)。
Fig. 2 Relationships between response ratio and altitude in 2021 in alpine grassland of Haibei, Qinghai. ○, no treatment; □, nitrogen (N) addition; ◇, phosphorus (P) addition; △, combination of N and P addition; White color, CK; black color, warming. Fitted line in the parent figure represents the relationship between the response ratios of the eight treatments and elevation (p < 0.05, R2 = 0.06), and the fitted line in the upper left subplot represents the relationship between the warming and altitude (p < 0.05, R2 = 0.39).
图3 青海海北高寒草地增温、养分添加及其交互作用对海拔3 200 m (A)、3 700 m (B)、4 050 m (C)群落地上生物量的影响。CK, 对照; N, 氮添加; NP, 氮磷共同添加; P, 磷添加。*, p < 0.05; **, p < 0.01。
Fig. 3 Influence of warming, nitrogen and phosphorus addition and their interaction on aboveground biomass of altitude 3 200 m (A), 3 700 m (B) and 4 050 m (C) in alpine grassland of Haibei, Qinghai. CK, no treatment; N, nitrogen addition; NP, combination of nitrogen and phosphorus addition; P, phosphorus addition. *, p < 0.05; **, p < 0.01.
处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
N | 1 | 24.21 | <0.001 | 15.61 | <0.001 | 6.84 | <0.05 |
P | 1 | 6.32 | <0.05 | 0.03 | 0.860 | 0.80 | 0.381 |
N × P | 1 | 1.79 | 0.193 | 1.89 | 0.182 | 0.26 | 0.612 |
W | 1 | 0.75 | 0.395 | 81.63 | <0.001 | 13.57 | <0.01 |
W × N | 1 | 1.95 | 0.176 | 3.58 | 0.070 | 0.27 | 0.605 |
W × P | 1 | 2.30 | 0.142 | 8.10 | <0.01 | 0.28 | 0.600 |
W × N × P | 1 | 0.08 | 0.776 | 0.90 | 0.353 | 1.75 | 0.198 |
表2 青海海北高寒草地增温、施肥对3个海拔地上生物量的影响
Table 2 Results of linear mixed model on the effects of warming, fertilizer and their interactions on aboveground biomass of three altitudes in alpine grassland of Haibei, Qinghai
处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
N | 1 | 24.21 | <0.001 | 15.61 | <0.001 | 6.84 | <0.05 |
P | 1 | 6.32 | <0.05 | 0.03 | 0.860 | 0.80 | 0.381 |
N × P | 1 | 1.79 | 0.193 | 1.89 | 0.182 | 0.26 | 0.612 |
W | 1 | 0.75 | 0.395 | 81.63 | <0.001 | 13.57 | <0.01 |
W × N | 1 | 1.95 | 0.176 | 3.58 | 0.070 | 0.27 | 0.605 |
W × P | 1 | 2.30 | 0.142 | 8.10 | <0.01 | 0.28 | 0.600 |
W × N × P | 1 | 0.08 | 0.776 | 0.90 | 0.353 | 1.75 | 0.198 |
图4 在不同养分条件下, 青海海北高寒草地增温对3个海拔4种不同功能群的地上生物量在群落总生物量中所占比例的影响。CK, 对照; N, 氮添加; NP, 氮、磷共同添加; P, 磷添加。*, p < 0.05; ***, p < 0.001。
Fig. 4 Effects of warming, nitrogen and phosphorus addition and their interaction on the relative biomass of different plant functional groups of three altitudes in alpine grassland of Haibei, Qinghai. CK, no treatment; N, nitrogen addition; NP, combination of nitrogen and phosphorus addition; P, phosphorus addition. *, p < 0.05; ***, p < 0.001.
功能群 Functional group | 处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
豆科 Legume | N | 1 | 22.10 | <0.001 | 2.00 | 0.172 | 3.79 | 0.065 |
P | 1 | <0.01 | 0.971 | <0.01 | 0.977 | 1.01 | 0.327 | |
N × P | 1 | 1.21 | 0.282 | 1.23 | 0.279 | 2.11 | 0.160 | |
W | 1 | 0.73 | 0.400 | 0.25 | 0.620 | 0.13 | 0.726 | |
W × N | 1 | 0.39 | 0.539 | 2.48 | 0.130 | 0.001 | 0.974 | |
W × P | 1 | 1.53 | 0.229 | 0.01 | 0.927 | 0.59 | 0.450 | |
W × N × P | 1 | 0.96 | 0.336 | 3.35 | 0.081 | <0.01 | 0.986 | |
禾草 Grass | N | 1 | 9.83 | <0.01 | 3.46 | 0.077 | 2.44 | 0.133 |
P | 1 | 1.27 | 0.272 | 1.07 | 0.312 | 7.17 | <0.05 | |
N × P | 1 | 14.03 | <0.01 | 0.01 | 0.937 | 3.12 | 0.092 | |
W | 1 | 0.62 | 0.441 | 10.86 | <0.01 | 8.85 | <0.01 | |
W × N | 1 | 1.86 | 0.187 | 5.14 | <0.05 | 2.45 | 0.133 | |
W × P | 1 | 0.11 | 0.744 | 0.20 | 0.656 | 0.07 | 0.793 | |
W × N × P | 1 | 1.22 | 0.282 | 1.01 | 0.325 | 0.49 | 0.493 | |
莎草 Sedge | N | 1 | 0.59 | 0.449 | 0.09 | 0.769 | 0.28 | 0.603 |
P | 1 | 17.14 | <0.001 | 0.27 | 0.607 | 20.59 | <0.001 | |
N × P | 1 | 0.81 | 0.377 | 0.34 | 0.566 | 1.06 | 0.314 | |
W | 1 | 0.04 | 0.837 | 4.95 | <0.05 | 12.81 | <0.01 | |
W × N | 1 | 2.00 | 0.171 | 0.05 | 0.833 | 0.78 | 0.387 | |
W × P | 1 | 1.24 | 0.276 | 0.78 | 0.387 | <0.01 | 0.988 | |
W × N × P | 1 | 0.11 | 0.739 | 0.85 | 0.367 | 1.52 | 0.231 | |
杂类草 Forb | N | 1 | 0.46 | 0.505 | 0.01 | 0.917 | <0.01 | 0.983 |
P | 1 | 0.22 | 0.645 | 5.63 | <0.05 | 4.52 | <0.05 | |
N × P | 1 | 0.43 | 0.521 | 0.03 | 0.874 | <0.01 | 0.977 | |
W | 1 | 0.67 | 0.422 | 0.59 | 0.450 | 0.20 | 0.660 | |
W × N | 1 | 1.74 | 0.202 | 0.07 | 0.798 | 0.02 | 0.899 | |
W × P | 1 | 0.34 | 0.567 | 0.54 | 0.469 | 0.12 | 0.734 | |
W × N × P | 1 | 0.80 | 0.381 | 0.70 | 0.411 | 0.32 | 0.576 |
表3 增温、施肥对青海海北高寒草地3个海拔高度4种功能群相对生物量的影响
Table 3 Effects of warming, nitrogen and phosphorus addition on the relative biomass of different functional groups on three altitudes in alpine grassland of Haibei, Qinghai
功能群 Functional group | 处理 Treatment | df | 3 200 m | 3 700 m | 4 050 m | |||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
豆科 Legume | N | 1 | 22.10 | <0.001 | 2.00 | 0.172 | 3.79 | 0.065 |
P | 1 | <0.01 | 0.971 | <0.01 | 0.977 | 1.01 | 0.327 | |
N × P | 1 | 1.21 | 0.282 | 1.23 | 0.279 | 2.11 | 0.160 | |
W | 1 | 0.73 | 0.400 | 0.25 | 0.620 | 0.13 | 0.726 | |
W × N | 1 | 0.39 | 0.539 | 2.48 | 0.130 | 0.001 | 0.974 | |
W × P | 1 | 1.53 | 0.229 | 0.01 | 0.927 | 0.59 | 0.450 | |
W × N × P | 1 | 0.96 | 0.336 | 3.35 | 0.081 | <0.01 | 0.986 | |
禾草 Grass | N | 1 | 9.83 | <0.01 | 3.46 | 0.077 | 2.44 | 0.133 |
P | 1 | 1.27 | 0.272 | 1.07 | 0.312 | 7.17 | <0.05 | |
N × P | 1 | 14.03 | <0.01 | 0.01 | 0.937 | 3.12 | 0.092 | |
W | 1 | 0.62 | 0.441 | 10.86 | <0.01 | 8.85 | <0.01 | |
W × N | 1 | 1.86 | 0.187 | 5.14 | <0.05 | 2.45 | 0.133 | |
W × P | 1 | 0.11 | 0.744 | 0.20 | 0.656 | 0.07 | 0.793 | |
W × N × P | 1 | 1.22 | 0.282 | 1.01 | 0.325 | 0.49 | 0.493 | |
莎草 Sedge | N | 1 | 0.59 | 0.449 | 0.09 | 0.769 | 0.28 | 0.603 |
P | 1 | 17.14 | <0.001 | 0.27 | 0.607 | 20.59 | <0.001 | |
N × P | 1 | 0.81 | 0.377 | 0.34 | 0.566 | 1.06 | 0.314 | |
W | 1 | 0.04 | 0.837 | 4.95 | <0.05 | 12.81 | <0.01 | |
W × N | 1 | 2.00 | 0.171 | 0.05 | 0.833 | 0.78 | 0.387 | |
W × P | 1 | 1.24 | 0.276 | 0.78 | 0.387 | <0.01 | 0.988 | |
W × N × P | 1 | 0.11 | 0.739 | 0.85 | 0.367 | 1.52 | 0.231 | |
杂类草 Forb | N | 1 | 0.46 | 0.505 | 0.01 | 0.917 | <0.01 | 0.983 |
P | 1 | 0.22 | 0.645 | 5.63 | <0.05 | 4.52 | <0.05 | |
N × P | 1 | 0.43 | 0.521 | 0.03 | 0.874 | <0.01 | 0.977 | |
W | 1 | 0.67 | 0.422 | 0.59 | 0.450 | 0.20 | 0.660 | |
W × N | 1 | 1.74 | 0.202 | 0.07 | 0.798 | 0.02 | 0.899 | |
W × P | 1 | 0.34 | 0.567 | 0.54 | 0.469 | 0.12 | 0.734 | |
W × N × P | 1 | 0.80 | 0.381 | 0.70 | 0.411 | 0.32 | 0.576 |
[1] | Bahn M, Körner C (2003). Recent increases in summit flora caused by warming in the Alps//Nagy L, Grabherr G, Körner C, Thompson DBA. Alpine Biodiversity in Europe. Ecological Studies: Vol. 167. Springer, Berlin. |
[2] |
Bai W, Wang GX, Xi JY, Liu YW, Yin PS (2019). Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. European Journal of Soil Biology, 92, 16-23.
DOI URL |
[3] |
Ceulemans T, Bodé S, Bollyn J, Harpole S, Coorevits K, Peeters G, van Acker K, Smolders E, Boeckx P, Honnay O (2017). Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nature Plants, 3, 16224. DOI: 10.1038/nplants.2016.224.
PMID |
[4] |
Chai X, Li YN, Duan C, Zhang T, Zong N, Shi PL, He YT, Zhang XZ (2018). CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 42, 6-19.
DOI URL |
[柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲 (2018). 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子. 植物生态学报, 42, 6-19.]
DOI |
|
[5] |
Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, et al. (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
DOI PMID |
[6] |
Chen LY, Fang K, Wei B, Qin SQ, Feng XH, Hu TY, Ji CJ, Yang YH (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24, 1018-1028.
DOI PMID |
[7] | Dai LC, Ke X, Cao YF, Zhang FW, Du YG, Li YK, Guo XW, Li Q, Lin L, Ma JJ, Cao GM (2019). Allocation patterns of above- and belowground biomass and its response to meteorological factors on an alpine meadow in Qinghai-Tibet Plateau. Acta Ecologica Sinica, 39, 486-493. |
[戴黎聪, 柯浔, 曹莹芳, 张法伟, 杜岩功, 李以康, 郭小伟, 李茜, 林丽, 马建军, 曹广民 (2019). 青藏高原矮嵩草草甸地下和地上生物量分配格局及其与气象因子的关系. 生态学报, 39, 486-493.] | |
[8] |
Dusenge ME, Duarte AG, Way DA (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221, 32-49.
DOI URL |
[9] |
Fu G, Sun W, Yu CQ, Zhang XZ, Shen ZX, Li YL, Yang PW, Zhou N (2015). Clipping alters the response of biomass production to experimental warming: a case study in an alpine meadow on the Tibetan Plateau, China. Journal of Mountain Science, 12, 935-942.
DOI URL |
[10] | Fu G, Zhang XZ, Zhang YJ, Shi PL, Li YL, Zhou YT, Yang PW, Shen ZX (2013). Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 7, 073505. DOI: 10.1117/1.JRS.7.073505. |
[11] |
Ganjurjav H, Gornish E, Hu G, Wu J, Wan Y, Li Y, Gao Q (2021). Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Ecology, 109, 1014-1025.
DOI URL |
[12] |
Hu G, Gao Q, Ganjurjav H, Wang Z, Luo W, Wu H, Li Y, Yan Y, Gornish ES, Schwartz MW, Wan Y, Li Y (2021). The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degradation & Development, 32, 4033-4041.
DOI URL |
[13] | Li HM, Ma YS, Wang YL (2010). Influences of climate warming on plant phenology in Qinghai Plateau. Journal of Applied Meteorological Science, 21, 500-505. |
[李红梅, 马玉寿, 王彦龙 (2010). 气候变暖对青海高原地区植物物候期的影响. 应用气象学报, 21, 500-505.] | |
[14] |
Li N, Wang GX, Yang Y, Gao YH, Liu GS (2011). Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology & Biochemistry, 43, 942-953.
DOI URL |
[15] |
Li XP, Wang L, Guo XY, Chen DL (2017). Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? International Journal of Climatology, 37, 1278-1284.
DOI URL |
[16] | Li Y, Lin L, Zhu WY, Zhang ZH, He JS (2017). Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 535-544. |
[李颖, 林笠, 朱文琰, 张振华, 贺金生 (2017). 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 53, 535-544.] | |
[17] | Li YN, Zhao L, Zhao XQ, Zhou HK (2004). Effects of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow. Acta Agrestia Sinica, 12, 236-239. |
[李英年, 赵亮, 赵新全, 周华坤 (2004). 5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 12, 236-239.]
DOI |
|
[18] |
Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[19] |
Ma L, Zhang Q, Zhang ZH, Guo J, Yang XY, Zhou BR, Deng YF, Wang F, She YD, Zhou HK (2020). Effects of gradient warming on species diversity and biomass in alpine meadows. Acta Agrestia Sinica, 28, 1395-1402.
DOI |
[马丽, 张骞, 张中华, 郭婧, 杨晓渊, 周秉荣, 邓艳芳, 王芳, 佘延娣, 周华坤 (2020). 梯度增温对高寒草甸物种多样性和生物量的影响. 草地学报, 28, 1395-1402.]
DOI |
|
[20] | Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX (2010). Altitude gradient variation of plant characters and biomass allocation in alpine meadow of Qinghai-Tibet Plateau. Scientia Sinica (Vitae), 40, 533-543. |
[马维玲, 石培礼, 李文华, 何永涛, 张宪洲, 沈振西 (2010). 青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异. 中国科学: 生命科学, 40, 533-543.] | |
[21] |
Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, Consortium I (2012). Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molecular Ecology, 21, 3729-3738.
DOI PMID |
[22] |
Nomoto HA, Alexander JM (2021). Drivers of local extinction risk in alpine plants under warming climate. Ecology Letters, 24, 1157-1166.
DOI PMID |
[23] |
Noyce GL, Kirwan ML, Rich RL, Megonigal JP (2019). Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 116, 21623-21628.
DOI PMID |
[24] | Pang XY, Lei JP, Wang A, Deng YP (2016). Response of plant community in subalpine meadow to climate change. Acta Botanica Boreali-Occidentalia Sinica, 36, 1678-1686. |
[庞晓瑜, 雷静品, 王奥, 邓云鹏 (2016). 亚高山草甸植物群落对气候变化的响应. 西北植物学报, 36, 1678-1686.] | |
[25] |
Pieper SJ, Loewen V, Gill M, Johnstone JF (2011). Plant responses to natural and experimental variations in temperature in alpine tundra, southern Yukon, Canada. Arctic, Antarctic, and Alpine Research, 43, 442-456.
DOI URL |
[26] |
Qiu J (2008). China: the third pole. Nature, 454, 393-396.
DOI |
[27] | Ren F, Song WM, Chen LT, Mi ZR, Zhang ZH, Zhu WY, Zhou HK, Cao GM, He JS (2016). Phosphorus does not alleviate the negative effect of nitrogen enrichment on legume performance in an alpine grassland. Journal of Plant Ecology, 10, 822-830. |
[28] |
Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[29] |
Rumpf SB, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, Willner W, Zimmermann NE, Dullinger S (2018). Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 115, 1848-1853.
DOI PMID |
[30] |
Sierra J (1997). Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biology & Biochemistry, 29, 1557-1563.
DOI URL |
[31] |
Soethe N, Lehmann J, Engels C (2008). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology, 24, 397-406.
DOI URL |
[32] |
Sun J, Cheng GW, Li WP (2013). Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 10, 1707-1715.
DOI URL |
[33] |
Tiwari P, Bhattacharya P, Rawat GS, Rai ID, Talukdar G (2021). Experimental warming increases ecosystem respiration by increasing above-ground respiration in alpine meadows of western Himalaya. Scientific Reports, 11, 2640. DOI: 10.1038/s41598-021-82065-y.
PMID |
[34] | Tognetti PM, Prober SM, Báez S, Chaneton EJ, Firn J, Risch AC, Schuetz M, Simonsen AK, Yahdjian L, Borer ET, Seabloom EW, Arnillas CA, Bakker JD, Brown CS, Cadotte MW, et al. (2021). Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023718118. DOI: 10.1073/pnas.2023718118. |
[35] | Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970. |
[36] |
Wang GX, Qian J, Cheng GD, Lai YM (2002). Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 291, 207-217.
PMID |
[37] |
Wang L, Yu H, Zhang Q, Xu Y, Tao Z, Alatalo JM, Dai J (2018). Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 28, 1953-1964.
DOI |
[38] |
Wang Z, Luo TX, Li RC, Tang YH, Du MY (2013). Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. Journal of Vegetation Science, 24, 189-201.
DOI URL |
[39] |
Wen J, Qin RM, Zhang SX, Yang XY, Xu MH (2020). Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China. Journal of Arid Land, 12, 252-266.
DOI |
[40] |
Winkler DE, Chapin KJ, Kueppers LM (2016). Soil moisture mediates alpine life form and community productivity responses to warming. Ecology, 97, 1553-1563.
DOI PMID |
[41] | Wu HB, Guo ZT, Peng CH (2003). Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles, 17, 1048. DOI: 10.1029/2001GB001844. |
[42] |
Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI |
|
[43] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[44] | Yang YJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Yu XC, Zhao XQ, Zhang H (2015). Effects of long-term simulated warming on soil physicochemical properties and plant chemical components of Kobresia humilis meadow. Chinese Journal of Ecology, 34, 781-789. |
[杨月娟, 周华坤, 姚步青, 王文颖, 董世魁, 余欣超, 赵新全, 张灏 (2015). 长期模拟增温对矮嵩草草甸土壤理化性质与植物化学成分的影响. 生态学杂志, 34, 781-789.] | |
[45] | Yang ZL, Zhang JY, Chu LL, Li H, Xiao R (2012). Effects of fertilization and mowing on community biomass compensation in eastern alpine meadow of Tibetan Plateau. Chinese Journal of Ecology, 31, 2276-2282. |
[杨中领, 张家洋, 楚莉莉, 李慧, 肖蕊 (2012). 施肥和刈割对青藏高原东部高寒草甸群落生物量补偿效应的影响. 生态学杂志, 31, 2276-2282.] | |
[46] |
Yao JQ, Yang Q, Mao WY, Zhao Y, Xu XB (2016). Precipitation trend-elevation relationship in arid regions of the China. Global and Planetary Change, 143, 1-9.
DOI URL |
[47] | You Q, Cai Z, Pepin N, Chen D, Ahrens B, Jiang Z, Wu F, Kang S, Zhang R, Wu T, Wang P, Li M, Zuo Z, Gao Y, Zhai P, Zhang Y (2021). Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences. Earth-Science Reviews, 217, 103625. DOI: 10.1016/j.earscirev.2021.103625. |
[48] | You Q, Chen D, Wu F, Pepin N, Cai Z, Ahrens B, Jiang Z, Wu Z, Kang S, AghaKouchak A (2020). Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives. Earth-Science Reviews, 210, 103349. DOI: 10.1016/j.earscirev.2020.103349. |
[49] | Zhang RY, Shi XM, Li WJ, Wang G, Guo R (2016). Effects of nitrogen and phosphorus addition on the plant aboveground biomass on a sub-alpine meadow. Ecological Science, 35(5), 15-20. |
[张仁懿, 史小明, 李文金, 王刚, 郭睿 (2016). 氮、磷添加对亚高寒草甸地上生物量的影响. 生态科学, 35(5), 15-20.] | |
[50] |
Zhao L, Cheng GD, Li SX, Zhao XM, Wang SL (2000). Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 45, 2181-2187.
DOI URL |
[51] |
Zhou J, Li XL, Peng F, Li C, Lai C, You Q, Xue X, Wu Y, Sun H, Chen Y, Zhong H, Lambers H (2021). Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 27, 6578-6591.
DOI PMID |
[52] |
Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
DOI URL |
[朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
DOI |
|
[53] | Zi HB, Ade LJ, Ma L, Hu L, Chen Y, Yang YF, Wang CT (2016). Change of ratio of root to soil and soil nutrient content at different grassland types in alpine meadow. Southwest China Journal of Agricultural Sciences, 29, 2916-2921. |
[字洪标, 阿的鲁骥, 马力, 胡雷, 陈焱, 杨有芳, 王长庭 (2016). 高寒草甸不同类型草地群落根土比、土壤养分变化. 西南农业学报, 29, 2916-2921.] | |
[54] |
Zong N, Duan C, Geng SB, Chai X, Shi PL, He YT (2018). Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chinese Journal of Applied Ecology, 29, 59-67.
DOI |
[宗宁, 段呈, 耿守保, 柴曦, 石培礼, 何永涛 (2018). 增温施氮对高寒草甸生产力及生物量分配的影响. 应用生态学报, 29, 59-67.]
DOI |
|
[55] |
Zong N, Shi PL, Zhao GS, Zheng LL, Niu B, Zhou TC, Hou G (2021). Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the northern Xizang Plateau. Chinese Journal of Plant Ecology, 45, 444-455.
DOI URL |
[宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁 (2021). 降水量变化对藏北高寒草地养分限制的影响. 植物生态学报, 45, 444-455.] |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[4] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[11] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[12] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[13] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[14] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[15] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19