植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 856-866.DOI: 10.17521/cjpe.2022.0183
所属专题: 全球变化与生态系统
吴帆1,2, 吴晨1,2, 张宇辉1,2, 余恒1,2, 魏智华1,2, 郑蔚1,2, 刘小飞1,2, 陈仕东1,2, 杨智杰1,2, 熊德成1,2,*()
收稿日期:
2022-05-07
接受日期:
2022-09-28
出版日期:
2023-06-20
发布日期:
2022-09-28
通讯作者:
* (基金资助:
WU Fan1,2, WU Chen1,2, ZHANG Yu-Hui1,2, YU Heng1,2, WEI Zhi-Hua1,2, ZHENG Wei1,2, LIU Xiao-Fei1,2, CHEN Shi-Dong1,2, YANG Zhi-Jie1,2, XIONG De-Cheng1,2,*()
Received:
2022-05-07
Accepted:
2022-09-28
Online:
2023-06-20
Published:
2022-09-28
Contact:
* (Supported by:
摘要:
为揭示气候变暖对我国亚热带地区人工林生态系统细根动态过程的影响, 在福建三明森林生态系统国家野外科学观测研究站开展成熟杉木(Cunninghamia lanceolata)人工林野外原位土壤增温实验, 采用内生长环法探究增温在不同季节对成熟杉木人工林细根生长量、形态及生理代谢特征的影响。结果表明: 与对照相比, 在雨季, 增温处理使得0-1 mm细根生长量及细根(0-2 mm)总生长量显著增加109.9%和78.2%, 0-1 mm细根比根长(SRL)和可溶性糖含量显著增加28.8%和41.5%, 而细根比呼吸速率(SRR)和淀粉含量显著降低64.1%和15.9%; 在旱季, 增温处理使得0-1和1-2 mm细根生长量及各形态指标均无显著变化, 而0-1 mm细根SRR、1-2 mm细根淀粉和非结构性碳水化合物(NSC)含量显著降低60.7%、43.9%和14.2%。因此, 在未来气候变暖背景下, 中亚热带地区成熟杉木人工林具有较强的适应能力。雨季, 成熟杉木人工林可能通过增加细根SRL, 吸收更多资源并促进淀粉向可溶性糖的转化来维持正常生理活动以促进细根生长来响应增温。旱季, 成熟杉木人工林则采取降低细根SRR、减少体内养分消耗并增加对NSC的利用, 提高水分运输效率以维持细根正常生长的策略来响应增温; 而调整细根SRL、比表面积和根组织密度可能不是其响应增温的主要策略。
吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响. 植物生态学报, 2023, 47(6): 856-866. DOI: 10.17521/cjpe.2022.0183
WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons. Chinese Journal of Plant Ecology, 2023, 47(6): 856-866. DOI: 10.17521/cjpe.2022.0183
图1 增温对成熟杉木人工林2021年土壤温度和湿度的影响。CT, 对照处理; W, 增温处理。
Fig. 1 Effects of warming on soil temperature and moisture in a mature Cunninghamia lanceolata plantation in year 2021. CT, control treatment; W, warming treatment.
图2 增温对成熟杉木人工林雨季(A)和旱季(B)细根生长量的影响(平均值±标准误)。CT, 对照处理; W, 增温处理。不同大写字母表示同一径级不同处理间差异显著(p < 0.05), 不同小写字母表示同一处理不同径级间差异显著(p < 0.05)。
Fig. 2 Effects of warming on growth of fine roots in a mature Cunninghamia lanceolata plantation in rainy (A) and dry (B) season (mean ± SE). CT, control treatment; W, warming treatment. Different uppercase letters indicate significant differences between different treatments of the same diameter class (p < 0.05), and different lowercase letters indicate significant differences between different diameter classes of the same treatment (p < 0.05).
指标 Index | 直径 Diameter (mm) | 因子 Factor | ||
---|---|---|---|---|
S | W | S × W | ||
细根生长量 Fine root growth (g·m-2) | 0-1 | 0.353 | 0.292 | 0.073 |
1-2 | 0.813 | 0.334 | 0.078 | |
0-2 | 0.439 | 0.582 | 0.047 | |
比根长 Specific root length (m·g-1) | 0-1 | 0.048 | 0.390 | 0.509 |
1-2 | 0.134 | 0.207 | 0.194 | |
根比表面积 Specific root surface area (cm-2·g-1) | 0-1 | 0.018 | 0.716 | 0.192 |
1-2 | 0.022 | 0.360 | 0.307 | |
根组织密度 Root tissue density (g·cm-3) | 0-1 | 0.069 | 0.834 | 0.608 |
1-2 | 0.004 | 0.825 | 0.721 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | 0-1 | 0.606 | 0.003 | 0.932 |
1-2 | 0.093 | 0.384 | 0.587 | |
可溶性糖含量 Soluble sugar content (mg·g-1) | 0-1 | 0.001 | 0.987 | 0.052 |
1-2 | 0.005 | 0.758 | 0.228 | |
淀粉含量 Starch content (mg·g-1) | 0-1 | 0.691 | 0.471 | 0.797 |
1-2 | 0.018 | 0.011 | 0.009 | |
非结构性碳水化合物含量 Non-structural carbohydrates content (mg·g-1) | 0-1 | 0.008 | 0.701 | 0.336 |
1-2 | <0.001 | 0.077 | 0.017 |
表1 增温和季节对成熟杉木人工林细根生长量、形态及生理代谢特征的重复测量方差分析的p值表
Table 1 p values of repeated measures ANOVA on the effects of season and warming on the growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation
指标 Index | 直径 Diameter (mm) | 因子 Factor | ||
---|---|---|---|---|
S | W | S × W | ||
细根生长量 Fine root growth (g·m-2) | 0-1 | 0.353 | 0.292 | 0.073 |
1-2 | 0.813 | 0.334 | 0.078 | |
0-2 | 0.439 | 0.582 | 0.047 | |
比根长 Specific root length (m·g-1) | 0-1 | 0.048 | 0.390 | 0.509 |
1-2 | 0.134 | 0.207 | 0.194 | |
根比表面积 Specific root surface area (cm-2·g-1) | 0-1 | 0.018 | 0.716 | 0.192 |
1-2 | 0.022 | 0.360 | 0.307 | |
根组织密度 Root tissue density (g·cm-3) | 0-1 | 0.069 | 0.834 | 0.608 |
1-2 | 0.004 | 0.825 | 0.721 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | 0-1 | 0.606 | 0.003 | 0.932 |
1-2 | 0.093 | 0.384 | 0.587 | |
可溶性糖含量 Soluble sugar content (mg·g-1) | 0-1 | 0.001 | 0.987 | 0.052 |
1-2 | 0.005 | 0.758 | 0.228 | |
淀粉含量 Starch content (mg·g-1) | 0-1 | 0.691 | 0.471 | 0.797 |
1-2 | 0.018 | 0.011 | 0.009 | |
非结构性碳水化合物含量 Non-structural carbohydrates content (mg·g-1) | 0-1 | 0.008 | 0.701 | 0.336 |
1-2 | <0.001 | 0.077 | 0.017 |
指标 Index | 因子 Factor | p | |
---|---|---|---|
雨季 Rainy season | 旱季 Dry season | ||
细根生长量 Fine root growth (g·m-2) | W | 0.003 | 0.297 |
D | 0.002 | 0.195 | |
W × D | 0.040 | 0.655 | |
比根长 Specific root length (m·g-1) | W | 0.026 | 0.429 |
D | <0.001 | <0.001 | |
W × D | 0.091 | 0.607 | |
根比表面积 Specific root surface area (cm-2·g-1) | W | 0.178 | 0.641 |
D | <0.001 | 0.001 | |
W × D | 0.350 | 0.331 | |
根组织密度 Root tissue density (g·cm-3) | W | 0.940 | 0.915 |
D | 0.002 | 0.916 | |
W × D | 0.577 | 0.860 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | W | 0.004 | 0.061 |
D | 0.001 | 0.024 | |
W × D | 0.003 | 0.018 | |
可溶性糖浓度 Soluble sugar concentration (mg·g-1) | W | 0.023 | 0.172 |
D | 0.240 | 0.129 | |
W × D | 0.926 | 0.809 | |
淀粉浓度 Starch concentration (mg·g-1) | W | 0.003 | 0.030 |
D | 0.101 | 0.250 | |
W × D | 0.054 | 0.056 | |
非结构性碳水化合物浓度 Non-structural carbohydrates concentration (mg·g-1) | W | 0.112 | 0.027 |
D | 0.435 | 0.069 | |
W × D | 0.734 | 0.185 |
表2 增温和径级对不同季节成熟杉木人工林细根生长量、形态及生理代谢特征影响的方差分析p值表
Table 2 p values of ANOVA on the effects of warming and diameter class on the growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons
指标 Index | 因子 Factor | p | |
---|---|---|---|
雨季 Rainy season | 旱季 Dry season | ||
细根生长量 Fine root growth (g·m-2) | W | 0.003 | 0.297 |
D | 0.002 | 0.195 | |
W × D | 0.040 | 0.655 | |
比根长 Specific root length (m·g-1) | W | 0.026 | 0.429 |
D | <0.001 | <0.001 | |
W × D | 0.091 | 0.607 | |
根比表面积 Specific root surface area (cm-2·g-1) | W | 0.178 | 0.641 |
D | <0.001 | 0.001 | |
W × D | 0.350 | 0.331 | |
根组织密度 Root tissue density (g·cm-3) | W | 0.940 | 0.915 |
D | 0.002 | 0.916 | |
W × D | 0.577 | 0.860 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | W | 0.004 | 0.061 |
D | 0.001 | 0.024 | |
W × D | 0.003 | 0.018 | |
可溶性糖浓度 Soluble sugar concentration (mg·g-1) | W | 0.023 | 0.172 |
D | 0.240 | 0.129 | |
W × D | 0.926 | 0.809 | |
淀粉浓度 Starch concentration (mg·g-1) | W | 0.003 | 0.030 |
D | 0.101 | 0.250 | |
W × D | 0.054 | 0.056 | |
非结构性碳水化合物浓度 Non-structural carbohydrates concentration (mg·g-1) | W | 0.112 | 0.027 |
D | 0.435 | 0.069 | |
W × D | 0.734 | 0.185 |
图3 增温对雨季(A)和旱季(B)成熟杉木人工林细根形态特征的影响(平均值±标准误)。CT, 对照处理; W, 增温处理。不同大写字母表示同一径级不同处理间差异显著(p < 0.05), 不同小写字母表示同一处理不同径级间差异显著(p < 0.05)。
Fig. 3 Effects of warming on morphological characteristics of fine roots in a mature Cunninghamia lanceolata plantation in rainy (A) and dry (B) season (mean ± SE). CT, control treatment; W, warming treatment. Different uppercase letters indicate significant differences between different treatments of the same diameter class (p < 0.05), and different lowercase letters indicate significant differences between different diameter classes of the same treatment (p < 0.05).
图4 增温对雨季(A)和旱季(B)成熟杉木人工林细根生理代谢特征的影响(平均值±标准误)。CT, 对照处理; W, 增温处理。不同大写字母表示同一径级不同处理间差异显著(p < 0.05), 不同小写字母表示同一处理不同径级间差异显著(p < 0.05)。
Fig. 4 Effects of warming on physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in rainy (A) and dry (B) season (mean ± SE). CT, control treatment; W, warming treatment. Different uppercase letters indicate significant differences between different treatments of the same diameter class (p < 0.05), and different lowercase letters indicate significant differences between different diameter classes of the same treatment (p < 0.05).
[1] |
Addo-Danso SD, Prescott CE, Adu-Bredu S, Duah-Gyamfi A, Moore S, Guy RD, Forrester DI, Owusu-Afriyie K, Marshall PL, Malhi Y (2018). Fine-root exploitation strategies differ in tropical old growth and logged-over forests in Ghana. Biotropica, 50, 606-615.
DOI URL |
[2] |
Allen LH, Vu JCV (2009). Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agricultural and Forest Meteorology, 149, 820-830.
DOI URL |
[3] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL |
[4] |
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547. DOI: 10.3389/fpls.2015.00547.
DOI |
[5] |
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M (2020). Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11, 544. DOI: 10.3389/fpls.2020.00544.
DOI |
[6] |
Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS (2013). Carbon storage in a chronosequence of Chinese fir plantations in Southern China. Forest Ecology and Management, 300, 68-76.
DOI URL |
[7] | Chen WY, Xiong DC, Shi SZ, Song TT, Cai YY, Guo RQ, Chen TT, Zheng X, Chen GS (2018). Effects of soil warming on fine root growth and morphology of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 38, 5305-5314. |
[陈望远, 熊德成, 史顺增, 宋涛涛, 蔡瑛莹, 郭润泉, 陈廷廷, 郑欣, 陈光水 (2018). 土壤增温对杉木幼苗细根生长量及形态特征的影响. 生态学报, 38, 5305-5314.] | |
[8] |
Comas LH, Eissenstat DM (2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397.
DOI URL |
[9] |
di Iorio A, Giacomuzzi V, Chiatante D (2016). Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings. Physiologia Plantarum, 156, 294-310.
DOI URL |
[10] |
Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165.
DOI URL |
[11] |
Feng JX, Xiong DC, Shi SZ, Xu CS, Zhong BY, Deng F, Chen YY, Chen GS, Yang YS (2017). Effects of soil warming on the ecophysiological properties of the fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 37, 35-43.
DOI URL |
[冯建新, 熊德成, 史顺增, 许辰森, 钟波元, 邓飞, 陈云玉, 陈光水, 杨玉盛 (2017). 土壤增温对杉木幼苗细根生理生态性质的影响. 生态学报, 37, 35-43.] | |
[12] |
Fischer S, Hanf S, Frosch T, Gleixner G, Popp J, Trumbore S, Hartmann H (2015). Pinus sylvestris switches respiration substrates under shading but not during drought. New Phytologist, 207, 542-550.
DOI PMID |
[13] |
Fort F, Freschet GT (2020). Plant ecological indicator values as predictors of fine-root trait variations. Journal of Ecology, 108, 1565-1577.
DOI URL |
[14] | Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, de Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, et al. (2021). Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 232, 1123-1158. |
[15] |
Fu G, Shen ZX, Sun W, Zhong ZM, Zhang XZ, Zhou YT (2015). A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 34, 57-65.
DOI URL |
[16] |
Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
DOI URL |
[17] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[18] |
Hasibeder R, Fuchslueger L, Richter A, Bahn M (2015). Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytologist, 205, 1117-1127.
DOI PMID |
[19] |
Huang XM, Lakso AN, Eissenstat DM (2005). Interactive effects of soil temperature and moisture on Concord grape root respiration. Journal of Experimental Botany, 56, 2651-2660.
PMID |
[20] | IPCC (2021). Climate Change 2021: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[21] | Jarvi MP, Burton AJ (2018). Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil. Plant, Cell & Environment, 41, 504-516. |
[22] |
Jarvi MP, Burton AJ (2020). Root respiration and biomass responses to experimental soil warming vary with root diameter and soil depth. Plant and Soil, 451, 435-446.
DOI |
[23] |
Jia SX, Wang ZQ, Li XP, Zhang XP, McLaughlin NB (2011). Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 31, 718-726.
DOI URL |
[24] |
Joslin JD, Wolfe MH, Hanson PJ (2001). Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant and Soil, 228, 201-212.
DOI URL |
[25] |
Li DD, Nan HW, Zhao CZ, Yin CY, Liu Q (2020). Effects of warming and fertilization interacting with intraspecific competition on fine root traits of Picea asperata. Journal of Plant Ecology, 14, 147-159.
DOI URL |
[26] |
Liese R, Leuschner C, Meier IC (2019). The effect of drought and season on root life span in temperate arbuscular mycorrhizal and ectomycorrhizal tree species. Journal of Ecology, 107, 2226-2239.
DOI URL |
[27] |
Loomis SE, Russell JM, Verschuren D, Morrill C, de Cort G, Sinninghe Damsté JS, Olago D, Eggermont H, Street- Perrott FA, Kelly MA (2017). The tropical lapse rate steepened during the Last Glacial Maximum. Science Advances, 3, e1600815. DOI: 10.1126/sciadv.1600815.
DOI |
[28] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below- ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[29] |
McCormack ML, Guo DL, Iversen CM, Chen WL, Eissenstat DM, Fernandez CW, Li L, Ma CG, Ma ZQ, Poorter H, Reich PB, Zadworny M, Zanne A (2017). Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist, 215, 27-37.
DOI PMID |
[30] |
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011). Soil warming, carbon- nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512.
DOI PMID |
[31] | Metcalfe DB, Meir P (2008). The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311, 189-199. |
[32] |
Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005). Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method. Plant and Soil, 268, 111-122.
DOI URL |
[33] |
Noh NJ, Crous KY, Li JQ, Choury Z, Barton CVM, Arndt SK, Reich PB, Tjoelker MG, Pendall E (2020). Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming? Tree Physiology, 40, 1192-1204.
DOI PMID |
[34] |
Nottingham AT, Meir P, Velasquez E, Turner BL (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234-237.
DOI |
[35] |
Ostonen I, Helmisaari HS, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011). Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 17, 3620-3632.
DOI URL |
[36] |
Parts K, Tedersoo L, Schindlbacher A, Sigurdsson BD, Leblans NIW, Oddsdóttir ES, Borken W, Ostonen I (2019). Acclimation of fine root systems to soil warming: comparison of an experimental setup and a natural soil temperature gradient. Ecosystems, 22, 457-472.
DOI |
[37] |
Poorter H, Ryser P (2015). The limits to leaf and root plasticity: What is so special about specific root length? New Phytologist, 206, 1188-1190.
DOI PMID |
[38] | Rastetter EB (2011). Modeling coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 9, 68-73. |
[39] | Song TT, Chen GS, Shi SZ, Guo RQ, Zheng X, Xiong DC, Chen WY, Chen TT (2018). Effects of soil warming on specific respiration rate and non-structural carbohydrate concentration in fine roots of Chinese fir seedlings. Chinese Journal of Applied Ecology, 29, 705-712. |
[宋涛涛, 陈光水, 史顺增, 郭润泉, 郑欣, 熊德成, 陈望远, 陈廷廷 (2018). 土壤增温对杉木幼苗细根呼吸和非结构性碳的影响. 应用生态学报, 29, 705-712.]
DOI |
|
[40] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
PMID |
[41] |
Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162, 437-446.
DOI URL |
[42] |
Wang JS, Defrenne C, McCormack ML, Yang L, Tian DS, Luo YQ, Hou EQ, Yan T, Li ZL, Bu WS, Chen Y, Niu SL (2021). Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytologist, 230, 1856-1867.
DOI PMID |
[43] |
Wei CX, Yang L, Wang JS, Yang JM, Shi JW, Tian DS, Zhou QP, Niu SL (2021). Effects of experimental warming on root biomass in terrestrial ecosystems. Chinese Journal of Plant Ecology, 45, 1203-1212.
DOI URL |
[魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽 (2021). 实验增温对陆地生态系统根系生物量的影响. 植物生态学报, 45, 1203-1212.]
DOI |
|
[44] |
Withington JM, Goebel M, Bulaj B, Oleksyn J, Reich PB, Eissenstat DM (2020). Remarkable similarity in timing of absorptive fine-root production across 11 diverse temperate tree species in a common garden. Frontiers in Plant Science, 11, 623722. DOI: 10.3389/fpls.2020.623722.
DOI |
[45] |
Xiong DC, Yang ZJ, Chen GS, Liu XF, Lin WS, Huang JX, Bowles FP, Lin CF, Xie JS, Li YQ, Yang YS (2018). Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. Soil Biology & Biochemistry, 123, 180-189.
DOI URL |
[46] | Xu Y, Xu K, Wang WJ, Yu SQ, Ruan HH, Ge ZW, Wang GB, Han QQ (2014). The response of carbohydrates compositions in fine root of poplar at different ages to nitrogen depositions. Journal of Nanjing Forestry University (Natural Sciences Edition), 38(3), 13-18. |
[徐钰, 许凯, 王文娟, 于水强, 阮宏华, 葛之葳, 王国兵, 韩强强 (2014). 不同林龄杨树细根糖化学组分对氮沉降的响应. 南京林业大学学报(自然科学版), 38(3), 13-18.] | |
[47] | Yan ZW, Ding YH, Zhai PM, Song LC, Cao LJ, Li Z (2020). Re-assessing climatic warming in China since the last century. Acta Meteorologica Sinica, 78, 370-378. |
[严中伟, 丁一汇, 翟盘茂, 宋连春, 曹丽娟, 李珍 (2020). 近百年中国气候变暖趋势之再评估. 气象学报, 78, 370-378.] | |
[48] |
Yang QP, Liu LL, Zhang WD, Xu M, Wang SL (2015). Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees, 29, 1207-1218.
DOI URL |
[49] | Zhong BY, Xiong DC, Shi SZ, Feng JX, Xu CS, Deng F, Chen YY, Chen GS (2016). Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings. Chinese Journal of Applied Ecology, 27, 2807-2814. |
[钟波元, 熊德成, 史顺增, 冯建新, 许辰森, 邓飞, 陈云玉, 陈光水 (2016). 隔离降水对杉木幼苗细根生物量和功能特征的影响. 应用生态学报, 27, 2807-2814.]
DOI |
|
[50] |
Zhou YM, Tang JW, Melillo JM, Butler S, Mohan JE (2011). Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31, 707-717.
DOI PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[7] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[8] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[9] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[10] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[11] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[12] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[13] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[14] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[15] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19