植物生态学报 ›› 2024, Vol. 48 ›› Issue (1): 103-112.DOI: 10.17521/cjpe.2023.0069 cstr: 32100.14.cjpe.2023.0069
所属专题: 植物功能性状
舒韦维1,2, 杨坤1,2, 马俊旭1,2, 闵惠琳1,2, 陈琳1,2, 刘士玲1,2, 黄日逸1, 明安刚1,2, 明财道1, 田祖为1,*()
收稿日期:
2023-03-10
接受日期:
2023-08-03
出版日期:
2024-01-20
发布日期:
2023-08-31
通讯作者:
(基金资助:
SHU Wei-Wei1,2, YANG Kun1,2, MA Jun-Xu1,2, MIN Hui-Lin1,2, CHEN Lin1,2, LIU Shi-Ling1,2, HUANG Ri-Yi1, MING An-Gang1,2, MING Cai-Dao1, TIAN Zu-Wei1,*()
Received:
2023-03-10
Accepted:
2023-08-03
Online:
2024-01-20
Published:
2023-08-31
Supported by:
摘要:
细根作为植物养分获取和能量运输的重要器官, 是根系中最活跃和最敏感的部分, 其功能属性沿环境梯度的变化规律能够反映植物对资源的利用策略及对环境变化的适应性。该研究旨在解析不同氮(N)添加水平对红锥(Castanopsis hystrix)细根形态、化学性状的影响, 探究红锥细根对短期N添加的可塑性, 为阐明和预测全球气候变化背景下植物根系生理功能变化提供理论支撑。2020年1月, 在红锥林内设置4个N添加水平样地: 对照(CK, 0 kg·hm-2·a-1)、低氮(LN, 50 kg·hm-2·a-1)、中氮(MN, 100 kg·hm-2·a-1)、高氮(HN, 150 kg·hm-2·a-1), 每个处理3个重复。利用挖掘法挖取红锥根系, 测定其1-5级根在不同N添加水平处理下细根比根长(SRL)、比表面积(SRA)、组织密度(RTD)、平均直径(RD)和化学计量的变化。结果表明, 与CK相比, MN、HN显著降低了土壤pH, HN显著增加了土壤硝态氮(NO3--N)和全磷(P)含量; N添加显著增加了1级细根的碳(C)含量; HN显著增加了2级细根C含量; MN和HN显著增加了1、2级细根的N含量, 但显著降低了2级细根的C:N; 不同N添加水平下细根的SRL、SRA、RTD和RD均无显著差异。因此短期N添加主要影响细根的元素含量及其化学计量比, 而未显著影响细根的形态性状, 这些结果将有助于理解南亚热带地区森林地下养分循环以及碳固存对全球环境变化的响应。
舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响. 植物生态学报, 2024, 48(1): 103-112. DOI: 10.17521/cjpe.2023.0069
SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix. Chinese Journal of Plant Ecology, 2024, 48(1): 103-112. DOI: 10.17521/cjpe.2023.0069
处理 Treatment | 土壤性质 Soil property | |||||
---|---|---|---|---|---|---|
pH | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 有机碳含量 Organic carbon content (g·kg-1) | 全磷含量 Total phosphorus content (g·kg-1) | 全氮含量 Total N content (g·kg-1) | |
对照 Control (CK) | 4.87 ± 0.06a | 4.04 ± 0.26a | 0.59 ± 0.15b | 13.77 ± 1.08a | 0.27 ± 0.06b | 0.79 ± 0.07a |
低氮 Low N (LN) | 4.72 ± 0.04ab | 4.91 ± 0.27a | 1.07 ± 0.18ab | 15.13 ± 0.54a | 0.31 ± 0.01ab | 1.02 ± 0.14a |
中氮 Medium N (MN) | 4.58 ± 0.04bc | 4.34 ± 0.27a | 1.29 ± 0.63ab | 16.14 ± 0.67a | 0.37 ± 0.01ab | 1.10 ± 0.15a |
高氮 High N (HN) | 4.42 ± 0.02c | 4.32 ± 0.47a | 1.99 ± 0.63a | 16.53 ± 0.96a | 0.43 ± 0.01a | 1.23 ± 0.11a |
表1 氮添加对广西南亚热带红锥人工林土壤理化性质的影响(平均值±标准误)
Table 1 Effects of nitrogen (N) addition on soil physicochemical properties in a Castanopsis hystrix plantation in the southern subtropical area of Guangxi (mean ± SE)
处理 Treatment | 土壤性质 Soil property | |||||
---|---|---|---|---|---|---|
pH | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 有机碳含量 Organic carbon content (g·kg-1) | 全磷含量 Total phosphorus content (g·kg-1) | 全氮含量 Total N content (g·kg-1) | |
对照 Control (CK) | 4.87 ± 0.06a | 4.04 ± 0.26a | 0.59 ± 0.15b | 13.77 ± 1.08a | 0.27 ± 0.06b | 0.79 ± 0.07a |
低氮 Low N (LN) | 4.72 ± 0.04ab | 4.91 ± 0.27a | 1.07 ± 0.18ab | 15.13 ± 0.54a | 0.31 ± 0.01ab | 1.02 ± 0.14a |
中氮 Medium N (MN) | 4.58 ± 0.04bc | 4.34 ± 0.27a | 1.29 ± 0.63ab | 16.14 ± 0.67a | 0.37 ± 0.01ab | 1.10 ± 0.15a |
高氮 High N (HN) | 4.42 ± 0.02c | 4.32 ± 0.47a | 1.99 ± 0.63a | 16.53 ± 0.96a | 0.43 ± 0.01a | 1.23 ± 0.11a |
图1 氮添加对广西南亚热带红锥细根化学特征的影响(平均值±标准误)。CK, 对照, 0 kg·hm-2·a-1; LN, 低氮添加, 50 kg·hm-2·a-1; MN, 中氮添加, 100 kg·hm-2·a-1; HN, 高氮添加, 150 kg·hm-2·a-1。不同小写字母表示不同序级之间差异显著, 不同大写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 1 Effects of nitrogen (N) addition on the chemical traits of fine roots of Castanopsis hystrix in the southern subtropical area of Guangxi (mean ± SE). C, carbon; P, phosphorus; CK, control, 0 kg·hm-2·a-1; LN, low N addition, 50 kg·hm-2·a-1; MN, medium N addition, 100 kg·hm-2·a-1; HN, high N addition, 150 kg·hm-2·a-1. Different lowercase letters indicate significant differences among different root orders, and different uppercase letters indicate significant differences among different N treatments (p < 0.05).
指标 Index | p | ||
---|---|---|---|
氮添加 N addition | 序级 Order | 氮添加 × 序级 N addition × order | |
比根长 Specific root length | 0.063 | 0.781 | 0.003** |
比表面积 Specific root area | 0.051 | 0.797 | 0.006** |
组织密度 Root tissue density | 0.015* | 0.134 | 0.719 |
平均直径 Average root diameter | 0.732 | <0.001*** | 0.977 |
碳(C)含量 Carbon (C) content | <0.001*** | <0.001*** | 0.248 |
氮含量 N content | <0.001*** | <0.001*** | 0.026* |
磷(P)含量 Phosphorus (P) content | 0.009** | <0.001*** | 0.909 |
碳氮比 C:N | 0.004** | <0.001*** | 0.998 |
氮磷比 N:P | 0.169 | 0.005** | 0.929 |
碳磷比 C:P | 0.136 | <0.001*** | 0.893 |
表2 氮添加、序级及其交互作用对广西南亚热带红锥细根形态、化学指标影响的双因素方差分析
Table 2 Two-way ANOVA of the effects of nitrogen (N) addition and root order on fine root traits of Castanopsis hystrix in the southern subtropical area of Guangxi
指标 Index | p | ||
---|---|---|---|
氮添加 N addition | 序级 Order | 氮添加 × 序级 N addition × order | |
比根长 Specific root length | 0.063 | 0.781 | 0.003** |
比表面积 Specific root area | 0.051 | 0.797 | 0.006** |
组织密度 Root tissue density | 0.015* | 0.134 | 0.719 |
平均直径 Average root diameter | 0.732 | <0.001*** | 0.977 |
碳(C)含量 Carbon (C) content | <0.001*** | <0.001*** | 0.248 |
氮含量 N content | <0.001*** | <0.001*** | 0.026* |
磷(P)含量 Phosphorus (P) content | 0.009** | <0.001*** | 0.909 |
碳氮比 C:N | 0.004** | <0.001*** | 0.998 |
氮磷比 N:P | 0.169 | 0.005** | 0.929 |
碳磷比 C:P | 0.136 | <0.001*** | 0.893 |
处理 Treatment | 序级 Order | 细根形态特征 Fine root morphological traits | |||
---|---|---|---|---|---|
SRL | SRA | RTD | RD | ||
对照 CK | 1 | 2 687.12 ± 306.89a | 325.07 ± 51.88a | 0.24 ± 0.05a | 0.42 ± 0.04c |
2 | 984.39 ± 60.56b | 178.76 ± 12.06b | 0.31 ± 0.03a | 0.49 ± 0.03bc | |
3 | 553.05 ± 72.12b | 139.36 ± 23.19b | 0.29 ± 0.02a | 0.61 ± 0.03bc | |
4 | 404.58 ± 71.53b | 106.87 ± 21.23b | 0.31 ± 0.01a | 0.72 ± 0.02b | |
5 | 183.75 ± 10.86b | 83.41 ± 6.19b | 0.28 ± 0.02a | 1.06 ± 0.10a | |
低氮 LN | 1 | 3 402.35 ± 311.18a | 428.67 ± 48.68a | 0.17 ± 0.05a | 0.47 ± 0.09b |
2 | 1 325.47 ± 204.56b | 227.36 ± 31.60b | 0.26 ± 0.03a | 0.52 ± 0.03ab | |
3 | 692.32 ± 167.10b | 161.37 ± 18.39b | 0.25 ± 0.02a | 0.66 ± 0.05ab | |
4 | 443.18 ± 69.86b | 129.94 ± 12.82b | 0.25 ± 0.01a | 0.73 ± 0.06ab | |
5 | 260.02 ± 57.63b | 99.12 ± 10.71b | 0.25 ± 0.01a | 1.00 ± 0.23a | |
中氮 MN | 1 | 3 080.89 ± 332.79a | 373.67 ± 47.62a | 0.20 ± 0.05a | 0.44 ± 0.05b |
2 | 1 036.45 ± 130.02b | 179.83 ± 12.17b | 0.31 ± 0.02a | 0.51 ± 0.03b | |
3 | 583.91 ± 145.00b | 140.59 ± 19.12b | 0.29 ± 0.04a | 0.61 ± 0.04ab | |
4 | 235.50 ± 66.09b | 118.05 ± 8.39b | 0.28 ± 0.02a | 0.66 ± 0.04ab | |
5 | 202.32 ± 26.35b | 80.57 ± 2.00b | 0.30 ± 0.07a | 0.96 ± 0.19a | |
高氮 HN | 1 | 2 919.41 ± 579.32a | 311.16 ± 67.99a | 0.27 ± 0.07a | 0.38 ± 0.03c |
2 | 1 180.52 ± 304.85b | 187.42 ± 32.31b | 0.33 ± 0.04a | 0.48 ± 0.04c | |
3 | 578.05 ± 144.11b | 139.59 ± 23.87b | 0.31 ± 0.04a | 0.66 ± 0.04bc | |
4 | 343.21 ± 36.54b | 115.32 ± 8.62b | 0.26 ± 0.02a | 0.82 ± 0.04b | |
5 | 166.01 ± 49.67b | 75.43 ± 14.07b | 0.29 ± 0.02a | 1.15 ± 0.13a |
表3 氮添加对广西南亚热带红锥细根形态特征的影响(平均值±标准误)
Table 3 Effects of nitrogen (N) addition on the morphological traits of fine roots of Castanopsis hystrix in the southern subtropical area of Guangxi (mean ± SE)
处理 Treatment | 序级 Order | 细根形态特征 Fine root morphological traits | |||
---|---|---|---|---|---|
SRL | SRA | RTD | RD | ||
对照 CK | 1 | 2 687.12 ± 306.89a | 325.07 ± 51.88a | 0.24 ± 0.05a | 0.42 ± 0.04c |
2 | 984.39 ± 60.56b | 178.76 ± 12.06b | 0.31 ± 0.03a | 0.49 ± 0.03bc | |
3 | 553.05 ± 72.12b | 139.36 ± 23.19b | 0.29 ± 0.02a | 0.61 ± 0.03bc | |
4 | 404.58 ± 71.53b | 106.87 ± 21.23b | 0.31 ± 0.01a | 0.72 ± 0.02b | |
5 | 183.75 ± 10.86b | 83.41 ± 6.19b | 0.28 ± 0.02a | 1.06 ± 0.10a | |
低氮 LN | 1 | 3 402.35 ± 311.18a | 428.67 ± 48.68a | 0.17 ± 0.05a | 0.47 ± 0.09b |
2 | 1 325.47 ± 204.56b | 227.36 ± 31.60b | 0.26 ± 0.03a | 0.52 ± 0.03ab | |
3 | 692.32 ± 167.10b | 161.37 ± 18.39b | 0.25 ± 0.02a | 0.66 ± 0.05ab | |
4 | 443.18 ± 69.86b | 129.94 ± 12.82b | 0.25 ± 0.01a | 0.73 ± 0.06ab | |
5 | 260.02 ± 57.63b | 99.12 ± 10.71b | 0.25 ± 0.01a | 1.00 ± 0.23a | |
中氮 MN | 1 | 3 080.89 ± 332.79a | 373.67 ± 47.62a | 0.20 ± 0.05a | 0.44 ± 0.05b |
2 | 1 036.45 ± 130.02b | 179.83 ± 12.17b | 0.31 ± 0.02a | 0.51 ± 0.03b | |
3 | 583.91 ± 145.00b | 140.59 ± 19.12b | 0.29 ± 0.04a | 0.61 ± 0.04ab | |
4 | 235.50 ± 66.09b | 118.05 ± 8.39b | 0.28 ± 0.02a | 0.66 ± 0.04ab | |
5 | 202.32 ± 26.35b | 80.57 ± 2.00b | 0.30 ± 0.07a | 0.96 ± 0.19a | |
高氮 HN | 1 | 2 919.41 ± 579.32a | 311.16 ± 67.99a | 0.27 ± 0.07a | 0.38 ± 0.03c |
2 | 1 180.52 ± 304.85b | 187.42 ± 32.31b | 0.33 ± 0.04a | 0.48 ± 0.04c | |
3 | 578.05 ± 144.11b | 139.59 ± 23.87b | 0.31 ± 0.04a | 0.66 ± 0.04bc | |
4 | 343.21 ± 36.54b | 115.32 ± 8.62b | 0.26 ± 0.02a | 0.82 ± 0.04b | |
5 | 166.01 ± 49.67b | 75.43 ± 14.07b | 0.29 ± 0.02a | 1.15 ± 0.13a |
[1] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] |
Akatsuki M, Makita N (2020). Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations. Tree Physiology, 40, 1071-1079.
DOI PMID |
[3] |
Bader M, Hiltbrunner E, Körner C (2009). Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Functional Ecology, 23, 913-921.
DOI URL |
[4] | Egerton-Warburton LM, Allen EB (2000). Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 10, 484-496. |
[5] | Fan AL, Zhang LH, Chen TT, Chen YH, Jiang Q, Jia LQ, Wang X, Chen GS (2020). Response of fine root stoichiometric traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broad-leaved forest. Acta Ecologica Sinica, 40, 4966-4974. |
[范爱连, 张礼宏, 陈廷廷, 陈宇辉, 姜琦, 贾林巧, 王雪, 陈光水 (2020). 常绿阔叶林外生、内生菌根树种细根化学计量学性状对N添加的响应. 生态学报, 40, 4966-4974.] | |
[6] | Fan HB, Liao YC, Liu WF, Yuan YH, Li YY, Huang RZ (2011). Effects of simulated nitrogen deposition on nutrient balance of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 31, 3277-3284. |
[樊后保, 廖迎春, 刘文飞, 袁颖红, 李燕燕, 黄荣珍 (2011). 模拟氮沉降对杉木幼苗养分平衡的影响. 生态学报, 31, 3277-3284.] | |
[7] |
Galloway J, Cowling E, Wang N (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31, 64-71.
PMID |
[8] | Gao ZB, Wang HY, Lü XT, Wang ZW (2017). Effects of nitrogen and phosphorus addition on C:N:P stoichiometry in roots and leaves of four dominant plant species in a meadow steppe of Hulunbuir. Chinese Journal of Ecology, 36, 80-88. |
[高宗宝, 王洪义, 吕晓涛, 王正文 (2017). 氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C:N:P化学计量特征的影响. 生态学杂志, 36, 80-88.] | |
[9] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
PMID |
[10] | Guo RQ, Xiong DC, Song TT, Cai YY, Chen TT, Chen WY, Zheng X, Chen GS (2018). Effects of simulated nitrogen deposition on stoichiometry of fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 38, 6101-6110. |
[郭润泉, 熊德成, 宋涛涛, 蔡瑛莹, 陈廷廷, 陈望远, 郑欣, 陈光水 (2018). 模拟氮沉降对杉木幼苗细根化学计量学特征的影响. 生态学报, 38, 6101-6110.] | |
[11] | Hong PZ, Liu SR, Yu HL, Hao J (2016). Effects of simulated nitrogen deposition on soil microbial biomass and community structure in a young plantation of Castanopsis hystrix. Journal of Shandong University (Natural Science), 51(5), 18-28. |
[洪丕征, 刘世荣, 于浩龙, 郝建 (2016). 模拟氮沉降对红椎人工幼龄林土壤微生物生物量和微生物群落结构的影响. 山东大学学报(理学版), 51(5), 18-28.] | |
[12] |
Huang ZQ, Liu B, Davis M, Sardans J, Peñuelas J, Billings S (2016). Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytologist, 210, 431-442.
DOI PMID |
[13] |
Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008). Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89, 121-137.
DOI URL |
[14] |
Jia SX, Wang ZQ, Li XP, Sun Y, Zhang XP, Liang AZ (2010). N fertilization affects on soil respiration, microbial biomass and roo trespiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant and Soil, 333, 325-336.
DOI URL |
[15] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441. DOI: 10.2307/2404783. |
[16] |
Kou L, Guo DL, Yang H, Gao WL, Li SG (2015). Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China. Plant and Soil, 391, 207-218.
DOI URL |
[17] |
Kou L, Jiang L, Fu XL, Dai XQ, Wang HM, Li SG (2018). Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytologist, 218, 1450-1461.
DOI URL |
[18] |
Kraus TEC, Zasoski RJ, Dahlgren RA (2004). Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant and Soil, 262, 95-109.
DOI URL |
[19] |
Li HS, Wang JS, Fa L, Zhao XH (2013). Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis. Chinese Journal of Applied and Environmental Biology, 19, 774-780.
DOI URL |
[李化山, 汪金松, 法蕾, 赵秀海 (2013). 模拟氮沉降对油松幼苗生长的影响. 应用与环境生物学报, 19, 774-780.] | |
[20] |
Li WB, Jin CJ, Guan DX, Wang QK, Wang AZ, Yuan FH, Wu JB (2015). The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biology & Biochemistry, 82, 112-118.
DOI URL |
[21] |
Liu J, Xiang WH, Xu X, Chen R, Tian DL, Peng CH, Fang X (2010). Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China. Chinese Journal of Plant Ecology, 34, 938-945.
DOI |
[刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰 (2010). 湖南会同5个亚热带树种的细根构型及功能特征分析. 植物生态学报, 34, 938-945.]
DOI |
|
[22] |
Liu RQ, Huang ZQ, Luke McCormack M, Zhou XH, Wan XH, Yu ZP, Wang MH, Zheng LJ (2017). Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation. Plant and Soil, 415, 317-330.
DOI URL |
[23] | Liu RX, Wu HJ, Huang GZ, Zhao CY, Li WB (2019). Effects of nitrogen addition on tree root traits. Chinese Journal of Applied Ecology, 30, 1735-1742. |
[刘瑞雪, 吴泓瑾, 黄国柱, 赵传燕, 李伟斌 (2019). 氮添加对树木根系特性的影响. 应用生态学报, 30, 1735-1742.]
DOI |
|
[24] | Lu XK, Vitousek PM, Mao QG, Gilliam FS, Luo YQ, Zhou GY, Zou XM, Bai E, Scanlon TM, Hou EQ, Mo JM (2018). Plant acclimation to long term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 115, 5187-5192. |
[25] |
Mao R, Song CC, Zhang XH, Wang XW, Zhang ZH (2013). Response of leaf, sheath and stem nutrient resorption to 7 years of N addition in freshwater wetland of northeast china. Plant and Soil, 364, 385-394.
DOI URL |
[26] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[27] |
Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16, 671-679.
DOI URL |
[28] |
Miao Y, Chen YL, Li XW, Fan C, Liu YK, Yang ZJ, Zhang J, Cai XL (2013). Effects of fertilization on Alnus formosana fine root morphological characteristics, biomass and issue content of C, N under A. formosana-Hemarthria compressa compound mode. Chinese Journal of Plant Ecology, 37, 674-683.
DOI URL |
[苗宇, 陈栎霖, 李贤伟, 范川, 刘运科, 杨正菊, 张军, 蔡新莉 (2013). 施肥对台湾桤木-扁穗牛鞭草复合模式下桤木细根形态特征、生物量及组织碳氮含量的影响. 植物生态学报, 37, 674-683.]
DOI |
|
[29] |
Mou P, Jones RH, Tan ZQ, Bao Z, Chen HM (2013). Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant and Soil, 364, 373-384.
DOI URL |
[30] |
Ostonen I, Helmisaari HS, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011). Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 17, 3620-3632.
DOI URL |
[31] |
Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine north american trees. Ecological Monographs, 72, 293-309.
DOI URL |
[32] | Quinn Thomas R, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13-17. |
[33] |
Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008). Global nitrogen deposition and carbon sinks. Nature geoscience, 1, 430-437.
DOI |
[34] | Shi SZ, Xiong DC, Feng JX, Xu CS, Zhong BY, Deng F, Chen YY, Chen GS, Yang YS (2017). Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 37, 74-83. |
[史顺增, 熊德成, 冯建新, 许辰森, 钟波元, 邓飞, 陈云玉, 陈光水, 杨玉盛 (2017). 模拟氮沉降对杉木幼苗细根的生理生态影响. 生态学报, 37, 74-83.] | |
[35] | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008). Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology, 32, 1217-1226. |
[师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008). 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32, 1217-1226.]
DOI |
|
[36] | Wang QT, Zhang ZL, Guo WJ, Zhu XM, Xiao J, Liu Q, Yin HJ (2021). Absorptive and transport roots differ in terms of their impacts on rhizosphere soil carbon storage and stability in alpine forests. Soil Biology & Biochemistry, 161, 108379. DOI: 10.1016/j.soilbio.2021.108379. |
[37] |
Wang GL, Fahey TJ, Xue S, Liu F (2012). Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia, 171, 583-590.
DOI URL |
[38] | Wang RJ, Jiang Y, Wang Y, Liu TW, Tang JR, Liu XS, Huang RL (2021). The change of soil carbon stabilization and carbon management index in different mixed plantations of Castanopsis hystrix in subtropical area of South China. Forest Research, 34(2), 24-31. |
[王仁杰, 蒋燚, 王勇, 刘庭薇, 唐靓茹, 刘雄盛, 黄荣林 (2021). 南亚热带不同红锥混交林土壤碳库稳定性与碳库管理指数变化. 林业科学研究, 34(2), 24-31.] | |
[39] | Wang WN, Wang Y, Wang SZ, Wang ZQ, Gu JC (2016). Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: a review. Chinese Journal of Applied Ecology, 27, 1294-1302. |
[王文娜, 王燕, 王韶仲, 王政权, 谷加存 (2016). 氮有效性增加对细根解剖、形态特征和菌根侵染的影响. 应用生态学报, 27, 1294-1302.]
DOI |
|
[40] |
Weand MP, Arthur MA, Lovett GM, Sikora F, Weathers KC (2010). The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 97, 159-181.
DOI URL |
[41] |
Wurzburger N, Wright SJ (2015). Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology, 96, 2137-2146.
PMID |
[42] |
Xiong DC, Huang JX, Yang ZJ, Lu ZL, Chen GS, Yang YS (2012). Fine root architecture and morphology among different branch orders of six subtropical tree species. Acta Ecologica Sinica, 32, 1888-1897.
DOI URL |
[熊德成, 黄锦学, 杨智杰, 卢正立, 陈光水, 杨玉盛 (2012). 亚热带6种树种细根序级结构和形态特征. 生态学报, 32, 1888-1897.] | |
[43] | Yan GY, Zhou MX, Wang M, Han SJ, Liu GC, Zhang X, Sun WJ, Huang BB, Wang HL, Xing YJ, Wang QG (2019). Nitrogen deposition and decreased precipitation altered nutrient foraging strategies of three temperate trees by affecting root and mycorrhizal traits. Catena, 181, 104094. DOI: 10.1016/j.catena.2019.104094. |
[44] | Yan XL, Lin ZY, Hu WJ, Ma XQ, Qu LP (2022). Root morphological characteristics of Cunninghamia lanceolata and its foraging strategies. World Forestry Research, 35(1), 26-31. |
[闫小莉, 林智熠, 胡文佳, 马祥庆, 曲鲁平 (2022). 杉木根系形态特征及其觅养策略研究进展. 世界林业研究, 35(1), 26-31.] | |
[45] |
Yang XJ, Huang ZY, Venable DL, Wang L, Zhang KL, Baskin JM, Baskin CC, Cornelissen JHC (2016). Linking performance trait stability with species distribution: the case of Artemisia and its close relatives in Northern China. Journal of Vegetation Science, 27, 123-132.
DOI URL |
[46] | Yang Y, Li T, Pokharel P, Liu LX, Qiao JB, Wang YQ, An SS, Chang SX (2022). Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biology & Biochemistry, 174, 108814. DOI: 10.1016/j.soilbio.2022.108814. |
[47] | Zhang LH (2019). Plastic Responses of Fine Root Traits to N and P in Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in an Evergreen Broadleaved Fores. Master degree dissertation, Fujian Normal University, Fuzhou. |
[张礼宏 (2019). 常绿阔叶林外生菌根与内生菌根树种细根性状对N和P的可塑性响应. 硕士学位论文, 福建师范大学, 福州.] | |
[48] | Zhao XX, Tian QX, Huang L, Lin QL, Wu JJ, Liu F (2022). Fine-root functional trait response to nitrogen deposition across forest ecosystems: a meta-analysis. Science of the Total Environment, 844, 157111. DOI: 10.1016/j.scitotenv.2022.157111. |
[49] | Zhou C, Liu T, Wang QG, Han SJ (2022). Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest. Journal of Beijing Forestry University, 44(11), 31-40. |
[周诚, 刘彤, 王庆贵, 韩士杰 (2022). 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报, 44(11), 31-40.] |
[1] | 全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响[J]. 植物生态学报, 2024, 48(8): 1050-1064. |
[2] | 蔡慧颖, 梁亚涛, 娄虎, 杨光, 孙龙. 白桦细根功能性状和根际细菌群落随火后时间的变化[J]. 植物生态学报, 2024, 48(7): 828-843. |
[3] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[4] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[7] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[8] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[9] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[10] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[11] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[12] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[13] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[14] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[15] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19