植物生态学报 ›› 2024, Vol. 48 ›› Issue (2): 135-146.DOI: 10.17521/cjpe.2023.0060 cstr: 32100.14.cjpe.2023.0060
所属专题: 全球变化与生态系统
• 综述 • 下一篇
杜旭龙1,2, 黄锦学2, 杨智杰1,2,3, 熊德成1,2,3,*()
收稿日期:
2023-02-28
接受日期:
2023-10-09
出版日期:
2024-02-28
发布日期:
2023-10-12
通讯作者:
* (基金资助:
DU Xu-Long1,2, HUANG Jin-Xue2, YANG Zhi-Jie1,2,3, XIONG De-Cheng1,2,3,*()
Received:
2023-02-28
Accepted:
2023-10-09
Online:
2024-02-28
Published:
2023-10-12
Contact:
* (Supported by:
摘要:
叶片和细根是植物地上和地下部分中最敏感和活跃的部分, 对森林生态系统的碳循环起着十分重要的作用。叶片和细根生理代谢特征及其相互关联的变化不仅反映植物在全球变暖背景下的生长状况, 也揭示了植物面对环境胁迫的响应特征和适应策略, 已经成为全球变化领域研究的热点和难点问题。国内外已开展了大量相关实验, 从氧化损伤、抗氧化防御及代谢物的角度探讨了全球变暖条件下植物叶片和细根生理代谢的变化特征和响应机制。目前部分研究认为大气增温将促进叶片体内活性氧类物质的积累, 对叶片产生氧化损伤, 而对细根的损伤作用不明显, 但也有部分研究认为细根受土壤增温的影响更大。总之, 植物叶片和细根如何通过调整自身生理代谢特征和器官间的相互协作来响应气候变暖, 以及这些响应的内在机制仍未得到充分研究。为此, 该文系统综述了全球变暖背景下植物叶片和细根氧化损伤与抗氧化防御特征及其相互关联变化的研究进展, 以期为植物对全球变暖的响应和适应机制研究提供参考, 并认为今后还应开展以下几个方面的研究: (1)在种群和群落尺度上加强增温对植物氧化损伤与防御特征的研究; (2)结合地上地下物候特征研究增温对植物氧化损伤与防御特征的影响; (3)从更多植物生理指标间的关联着手深入分析植物氧化损伤与防御特征对增温的响应; (4)加强植物地上和地下器官的关联和季节差异研究。
杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展. 植物生态学报, 2024, 48(2): 135-146. DOI: 10.17521/cjpe.2023.0060
DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review. Chinese Journal of Plant Ecology, 2024, 48(2): 135-146. DOI: 10.17521/cjpe.2023.0060
研究对象 Research object | 活性氧类物质 Active oxygen species | 参考文献 Reference |
---|---|---|
云杉 Picea sp. | 增加 Increase | Han et al., |
杉木 Cunninghamia lanceolata | 增加 Increase | Zhang et al., |
大豆 Glycine max | 增加 Increase | Imran et al., |
水稻 Oryza sativa | 增加 Increase | Taratima et al., |
麻风树 Jatropha curcas | 增加 Increase | Sliva et al., |
冬小麦 Triticum aestivum | 减少 Decrease | Fan et al., |
表1 增温对植物活性氧类物质的影响
Table 1 Effects of warming on the active oxygen species of plants
研究对象 Research object | 活性氧类物质 Active oxygen species | 参考文献 Reference |
---|---|---|
云杉 Picea sp. | 增加 Increase | Han et al., |
杉木 Cunninghamia lanceolata | 增加 Increase | Zhang et al., |
大豆 Glycine max | 增加 Increase | Imran et al., |
水稻 Oryza sativa | 增加 Increase | Taratima et al., |
麻风树 Jatropha curcas | 增加 Increase | Sliva et al., |
冬小麦 Triticum aestivum | 减少 Decrease | Fan et al., |
类型 Type | 组成 Composition | 参考文献 Reference |
---|---|---|
抗氧化酶系统 Antioxidant enzyme system | 超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶、过氧化物酶等 Superoxide dismutase, catalase, ascorbic acid peroxidase, peroxidase, etc. | Rivas-Ubach et al., Fei et al., |
非酶抗氧化系统 Non-enzyme antioxidant system | 酚类、黄酮类化合物、有机酸、氨基酸和脂质等小分子抗氧化性代谢物 Phenols, flavonoids, organic acids, amino acids, lipids and other small molecular antioxidant metabolites | Suseela et al., Zhu et al., |
表2 抗氧化防御系统的组成和分类
Table 2 Composition and classification of antioxidant defense system
类型 Type | 组成 Composition | 参考文献 Reference |
---|---|---|
抗氧化酶系统 Antioxidant enzyme system | 超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶、过氧化物酶等 Superoxide dismutase, catalase, ascorbic acid peroxidase, peroxidase, etc. | Rivas-Ubach et al., Fei et al., |
非酶抗氧化系统 Non-enzyme antioxidant system | 酚类、黄酮类化合物、有机酸、氨基酸和脂质等小分子抗氧化性代谢物 Phenols, flavonoids, organic acids, amino acids, lipids and other small molecular antioxidant metabolites | Suseela et al., Zhu et al., |
[1] |
AbdElgawad H, Farfan-Vignolo ER, de Vos D, Asard H (2015). Elevated CO2 mitigates drought and temperature- induced oxidative stress differently in grasses and legumes. Plant Science, 231, 1-10.
DOI PMID |
[2] | Adamczyk B, Sietiö OM, Straková P, Prommer J, Wild B, Hagner M, Pihlatie M, Fritze H, Richter A, Heinonsalo J (2019). Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nature Communications, 10, 3982. DOI: 10.1038/s41467-019-11993-1. |
[3] | Ahanger MA, Agarwal RM (2017). Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma, 254, 1471-1486. |
[4] | Aidoo MK, Bdolach E, Fait A, Lazarovitch N, Rachmilevitch S (2016). Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. Plant Physiology and Biochemistry, 106, 73-81. |
[5] | Ara N, Nakkanong K, Yang J, Hu Z, Zhang M (2015). Dissecting the heat stress-induced alterations in the leaf ultrastructure and some antioxidant network components in interspecific (Cucurbita maxima × Cucurbita moschata) inbred line of squash ‘Maxchata’ as to its parents possessing variable heat tolerance. Plant Growth Regulation, 76, 289-301. |
[6] |
Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14, 4885-4911.
DOI PMID |
[7] | Baghour M, Ben Chekroun K, Manuel Ruiz Sáez J, Romero L (2016). Root-zone temperature affects the phytoextraction of iron in contaminated soil. Journal of Plant Nutrition, 39, 51-58. |
[8] | Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004). Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). Journal of Experimental Botany, 55, 1663-1669. |
[9] | Batjuka A, Natalja Š (2017). The effect of antimycin A on the intensity of oxidative stress, the level of lipid peroxidation and antioxidant enzyme activities in different organs of wheat (Triticum aestivum L.) seedlings subjected to high temperature. Archives of Biological Sciences, 69, 743-752. |
[10] |
Cavaleri MA, Reed SC, Smith WK, Wood TE (2015). Urgent need for warming experiments in tropical forests. Global Change Biology, 21, 2111-2121.
DOI PMID |
[11] | Chaitanya KV, Sundar D, Reddy AR (2001). Mulberry leaf metabolism under high temperature stress. Biologia Plantarum, 44, 379-384. |
[12] | Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7, 111-134. |
[13] | Fan Y, Tian Z, Yan Y, Hu C, Abid M, Jiang D, Ma C, Huang Z, Dai T (2017). Winter night-warming improves post-anthesis physiological activities and sink strength in relation to grain filling in winter wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 992. DOI: 10.3389/fpls.2017.00992. |
[14] | Fei XT, Li JM, Kong LJ, Hu HC, Tian JY, Liu YL, Wei AZ (2020). miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. Plant Physiology and Biochemistry, 150, 196-203. |
[15] | Fu G, Shen ZX, Sun W, Zhong ZM, Zhang XZ, Zhou YT (2015). A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 34, 57-65. |
[16] |
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Oravec M, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J (2015). Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytologist, 207, 591-603.
DOI PMID |
[17] | Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Rivas-Ubach A, Oravec M, Vecerova K, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J (2014). Opposite metabolic responses of shoots and roots to drought. Scientific Reports, 4, 6829. DOI: 10.1038/srep06829. |
[18] |
Hagedorn F, Gavazov K, Alexander JM (2019). Above- and belowground linkages shape responses of mountain vegetation to climate change. Science, 365, 1119-1123.
DOI PMID |
[19] | Han C, Liu Q, Yang Y (2009). Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regulation, 58, 153-162. |
[20] | Hare PD, Cress WA, van Staden J (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment, 21, 535-553. |
[21] | Huang J, Chen G, Yang Z, Xiong D, Guo J, Xie J, Robinson D, Yang Y (2016). Understory fine roots are more ephemeral than those of trees in subtropical Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) stands. Annals of Forest Science, 73, 657-667. |
[22] | Hui R, Li XR, Jia RL, Liu LC, Zhao RM, Zhao X, Wei YP (2014). Photosynthesis of two moss crusts from the Tengger Desert with contrasting sensitivity to supplementary UV-B radiation. Photosynthetica, 52, 36-49. |
[23] | Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, Yun BW, Latif Khan A, Lee IJ (2021). Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules, 26, 5116. DOI: 10.3390/molecules26175116. |
[24] | IPCC (2021). Climate Change 2021: the Physical Science. Cambridge University Press, Cambridge, UK. |
[25] | Jin Y, Hao G, Hammond WM, Yu K, Liu X, Ye Q, Zhou Z, Wang C (2023). Aridity-dependent sequence of water potentials for stomatal closure and hydraulic dysfunctions in woody plants. Global Change Biology, 29, 2030-2040. |
[26] | Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122. |
[27] |
Lahti M, Aphalo PJ, Finér L, Ryyppö A, Lehto T, Mannerkoski H (2005). Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiology, 25, 115-122.
PMID |
[28] | Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013). Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant and Soil, 366, 287-303. |
[29] | Li WC, Sheng HY, Gao GB, Wen X, Tian XL (2017). Impact of drought, heat, and their combination on the eco-physiological characteristics of leaves and fine roots in dwarf bamboo (Indocalamus barbatus). Research of Environmental Sciences, 30, 1908-1918. |
[李伟成, 盛海燕, 高贵宾, 温星, 田新立 (2017). 高温干旱对髯毛箬竹的叶和细根的生理生态影响. 环境科学研究, 30, 1908-1918.] | |
[30] | Li WC, Sheng HY, Tian XL, Fang BY (2019). Ecophysiological responses of leaves and fine roots of Indocalamus barbatus McClure seedlings to heat and drought. Pakistan Journal of Botany, 51, 89-96. |
[31] | Li YY, Zhou GY, Liu JX (2017). Different growth and physiological responses of six subtropical tree species to warming. Frontiers in Plant Science, 8, 1511. DOI: 10.3389/fpls.2017.01511. |
[32] | Lima CS, Ferreira-Silva SL, Leite Carvalho FE, Lima Neto MC, Aragão RM, Silva EN, Sousa RMJ, Albenisio Gomes Silveira J (2018). Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environmental and Experimental Botany, 149, 59-69. |
[33] | Liu JJ, Li JQ, Su XH, Xia ZL (2014). Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco. Environmental and Experimental Botany, 107, 173-179. |
[34] | Lozano YM, Aguilar-Trigueros CA, Flaig IC, Rillig MC (2020). Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology, 34, 2224-2235. |
[35] | Mahmood DS, Wahid A, Rasheed R, Hussain I, Basra S (2012). Possible antioxidative role of endogenous vitamins biosynthesis in heat stressed maize (Zea mays). International Journal of Agriculture and Biology, 14, 25-32. |
[36] | Manzoni S, Vico G, Porporato A, Katul G (2013). Biological constraints on water transport in the soil-plant-atmosphere system. Advances in Water Resources, 51, 292-304. |
[37] | Martinez CA, Bianconi M, Silva L, Approbato A, Lemos M, Santos L, Curtarelli L, Rodrigues A, Mello T, Manchon F (2014). Moderate warming increases PSII performance, antioxidant scavenging systems and biomass production in Stylosanthes capitata Vogel. Environmental and Experimental Botany, 102, 58-67. |
[38] |
McCord JM, Fridovich I (1968). The reduction of cytochrome c by milk xanthine oxidase. Journal of Biological Chemistry, 243, 5753-5760.
PMID |
[39] |
McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z, Poorter H, Reich PB, Zadworny M, Zanne A (2017). Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist, 215, 27-37.
DOI PMID |
[40] | Medori M, Michelini L, Nogues I, Loreto F, Calfapietra C (2012). The impact of root temperature on photosynthesis and isoprene emission in three different plant species. The Scientific World Journal, 2012, 525827. DOI: 10.1100/2012/525827. |
[41] |
Moles TM, Mariotti L, de Pedro LF, Guglielminetti L, Picciarelli P, Scartazza A (2018). Drought induced changes of leaf-to-root relationships in two tomato genotypes. Plant Physiology and Biochemistry, 128, 24-31.
DOI PMID |
[42] |
Møller IM, Sweetlove LJ (2010). ROS signaling-specificity is required. Trends in Plant Science, 15, 370-374.
DOI PMID |
[43] | Nguyen A, Lamant A (1988). Pinitol and myo-inositol accumulation in water-stressed seedlings of maritime pine. Phytochemistry, 27, 3423-3427. |
[44] | Niu SL, Li ZX, Xia JY, Han Y, Wu MY, Wan SQ (2007). Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany, 63, 91-101. |
[45] | Nogués I, Peñuelas J, Llusià J, Estiarte M, Munné-Bosch S, Sardans J, Loreto F (2012). Physiological and antioxidant responses of Erica multiflora to drought and warming through different seasons. Plant Ecology, 213, 649-661. |
[46] | Peñuelas J, Canadell JG, Ogaya R (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20, 597-608. |
[47] |
Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, Filella I, Jump AS (2013). Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology, 19, 2303-2338.
DOI PMID |
[48] |
Rivas-Ubach A, Gargallo-Garriga A, Sardans J, Oravec M, Mateu-Castell L, Pérez-Trujillo M, Parella T, Ogaya R, Urban O, Peñuelas J (2014). Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytologist, 202, 874-885.
DOI PMID |
[49] |
Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 4181-4186.
DOI PMID |
[50] | Ruiz-Pérez G, Launiainen S, Vico G (2019). Role of plant traits in photosynthesis and thermal damage avoidance under warmer and drier climates in boreal forests. Forests, 10, 398. DOI: 10.3390/f10050398. |
[51] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI PMID |
[52] | Selmar D (2008). Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode, 58, 139-144. |
[53] | Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng BS (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24, 2452. DOI: 10.3390/molecules24132452. |
[54] | Silva EN, Silveira JAG, Ribeiro RV, Oliveira JÊ, Cardoso RA (2018). Photosynthetic and antioxidant responses of Jatropha curcas plants to heat stress: on the relative sensitivity of shoots and roots. Journal of Plant Growth Regulation, 37, 255-265. |
[55] | Skliros D, Kalloniati C, Karalias G, Skaracis GN, Rennenberg H, Flemetakis E (2018). Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant and Soil, 429, 451-468. |
[56] |
Smirnoff N, Arnaud D (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221, 1197-1214.
DOI PMID |
[57] | Soto A, Hernández L, Quiles MJ (2014). High root temperature affects the tolerance to high light intensity in Spathiphyllum plants. Plant Science, 227, 84-89. |
[58] | Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu X, Jin J (2017). Paleogene monsoons across India and South China: drivers of biotic change. Gondwana Research, 49, 350-363. |
[59] |
Sroka Z, Cisowski W (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology, 41, 753-758.
PMID |
[60] |
Suseela V, Tharayil N, Xing B, Dukes JS (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21, 4177-4195.
DOI PMID |
[61] |
Tan QQ, Li JZ, Chen ZX, Wang GA, Jia YF, Yao HY, Han WX (2018). Minimizing the effect of precipitation in clarifying the responses of leaf N and P stoichiometry to temperature. Environmental Pollution, 243, 404-409.
DOI PMID |
[62] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, et al. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[63] | Taratima W, Chuanchumkan C, Maneerattanarungroj P, Trunjaruen A, Theerakulpisut P, Dongsansuk A (2022). Effect of heat stress on some physiological and anatomical characteristics of rice (Oryza sativa L.) cv. KDML105 callus and seedling. Biology, 11, 1587. DOI: 10.3390/biology11111587. |
[64] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397. |
[65] | Wu YB, Ye B (2016). Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings. Acta Ecologica Sinica, 36, 403-410. |
[吴永波, 叶波 (2016). 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响. 生态学报, 36, 403-410.] | |
[66] | Xiao QY, Yin CY, Pu XZ, Qiao MF, Liu Q (2014). Ecophysiological characteristics of leaves and fine roots in dominant tree species in a subalpine coniferous forest of western Sichuan during seasonal frozen soil period. Chinese Journal of Plant Ecology, 38, 343-354. |
[肖群英, 尹春英, 濮晓珍, 乔明锋, 刘庆 (2014). 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征. 植物生态学报, 38, 343-354.]
DOI |
|
[67] | Xiong D, Yang Z, Chen G, Liu X, Lin W, Huang J, Bowles FP, Lin C, Xie J, Li Y, Yang Y (2018). Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. Soil Biology & Biochemistry, 123, 180-189. |
[68] | Ye WM, Xiong DC, Yang ZJ, Zhang QF, Liu XF, Gao YL, Xu C, Yang YS (2020). Effects of atmospheric warming on physiological characteristics of leaves and fine roots of Cunninghamia lanceolata saplings. Acta Ecologica Sinica, 40, 7681-7689. |
[叶旺敏, 熊德成, 杨智杰, 张秋芳, 刘小飞, 高艳丽, 胥超, 杨玉盛 (2020). 大气增温对杉木幼树叶片及细根生理特征的影响. 生态学报, 40, 7681-7689.] | |
[69] | Zhang QF (2020). Effect of Warming on Growth of Subtropical Cunninghamia lanceolata Seedlings and Its Nutritional and Physiological Regulation Mechanism. PhD dissertation, Fujian Normal University, Fuzhou. |
[张秋芳 (2020). 增温对亚热带杉木幼林生长的影响及其养分和生理调控机制. 博士学位论文, 福建师范大学, 福州.] | |
[70] | Zhang QF, Lü CP, Bei ZX, Xie JS, Lü MK, Lin WS, Chen YM, Yang YS (2016). Effects of simulated warming outdoor on lipid peroxidation and protective enzyme activities in the subtropical species Cunninghamia lanceolata. Chinese Journal of Plant Ecology, 40, 1230-1237. |
[张秋芳, 吕春平, 贝昭贤, 谢锦升, 吕茂奎, 林伟盛, 陈岳民, 杨玉盛 (2016). 野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响. 植物生态学报, 40, 1230-1237.]
DOI |
|
[71] | Zhang QF, Lyu CP, Zhou JC, Li XJ, Zheng Y, Xiong DC, Chen YM, Yang YS (2019). Nutrient and metabolic responses of the leaves of Cunninghamia lanceolata seedlings to warming and reduced precipitation in different seasons. Chinese Journal of Applied Ecology, 30, 420-428. |
[张秋芳, 吕春平, 周嘉聪, 李晓杰, 郑永, 熊德成, 陈岳民, 杨玉盛 (2019). 不同季节杉木幼苗叶片养分和代谢组分对增温和减少降水的响应. 应用生态学报, 30, 420-428.]
DOI |
|
[72] | Zhang QF, Yang ZJ, Chen TT, Gong XY, Xiong DC, Ye WM, Chen YM, Yang YS (2019). Warming alters plant chemical and nutrient compositions by affecting metabolites in Cunninghamia lanceolata (Lamb.) Hook. Forests, 10, 553. DOI: 10.3390/f10070553. |
[73] | Zhao CZ, Liu Q (2012). Effects of soil warming and nitrogen fertilization on leaf physiology of Pinus tabulaeformis seedlings. Acta Physiologiae Plantarum, 34, 1837-1846. |
[74] | Zhou RL, Wang XW, Zuo JC, Yang RY, Huang QR, Liu Y (2015). The relationship between concentrations of Na+ and changes of physiological response to salt in the leaves and roots of plants. Acta Ecologica Sinica, 35, 4518-4526. |
[周瑞莲, 王相文, 左进城, 杨润亚, 黄清荣, 刘怡 (2015). 海岸不同生态断带植物根叶抗逆生理变化与其Na+含量的关系. 生态学报, 35, 4518-4526.] | |
[75] |
Zhou Y, Tang J, Melillo JM, Butler S, Mohan JE (2011). Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31, 707-717.
DOI PMID |
[76] | Zhu LC, Liu X, Tan J, Wang BC (2013). Influence of harvest season on antioxidant activity and constituents of rabbiteye blueberry (Vaccinium ashei) leaves. Journal of Agricultural and Food Chemistry, 61, 11477-11483. |
[77] | Zhu M, Geng S, Chakravorty D, Guan Q, Chen S, Assmann SM (2020). Metabolomics of red light-induced stomatal opening in Arabidopsis thaliana: coupling with abscisic acid and jasmonic acid metabolism. The Plant Journal, 101, 1331-1348. |
[1] | 陈香蕾 崔树娟 赵晨军 顾洪亮 陈晓萍 李锦隆 孙俊. 基于叶片分类的木本植物单叶片面积预测模型[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 蔡慧颖, 梁亚涛, 娄虎, 杨光, 孙龙. 白桦细根功能性状和根际细菌群落随火后时间的变化[J]. 植物生态学报, 2024, 48(7): 828-843. |
[3] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[4] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[11] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[12] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[13] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[14] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[15] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19