植物生态学报 ›› 2024, Vol. 48 ›› Issue (3): 331-340.DOI: 10.17521/cjpe.2023.0018 cstr: 32100.14.cjpe.2023.0018
收稿日期:
2023-01-19
接受日期:
2023-05-30
出版日期:
2024-03-20
发布日期:
2023-06-01
通讯作者:
*(srlkang@imau.edu.cn)
基金资助:
SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul*()
Received:
2023-01-19
Accepted:
2023-05-30
Online:
2024-03-20
Published:
2023-06-01
Contact:
*(srlkang@imau.edu.cn)
Supported by:
摘要:
为探讨长期(19年)放牧干扰下荒漠草原植物的响应与适生策略, 该研究以荒漠草原优势种无芒隐子草(Cleistogenes songorica)作为研究对象, 测量不同放牧强度(控制、轻度、中度、重度)下叶片解剖结构指标, 探讨无芒隐子草叶片解剖结构对长期放牧干扰作出的响应。结果表明: (1)保护组织方面, 角质层厚度、角质层厚度占叶片厚度比均随着放牧强度的增加呈先减小后增加趋势。泡状细胞厚度随着放牧强度的增加先减小后增加, 与对照、中度、重度放牧区相比, 轻度放牧区泡状细胞厚度显著减小。(2)维管组织方面, 维管束面积、导管面积、韧皮部面积3个指标均随放牧强度的增加呈先增加后减小趋势。木质部面积随着放牧强度增加先减小后增加。维管组织占比方面, 木质部占维管束面积比随着放牧强度增加而增加, 而主导管占主脉维管束面积比随着放牧强度增加而减小。韧皮部面积随着放牧强度的增加呈先增加后减小趋势, 与对照区相比, 3种放牧区韧皮部面积显著减小。(3)花环结构面积随着放牧强度的增加呈增加趋势, 与对照区相比, 3种放牧区花环结构面积显著增加。上述结果表明无芒隐子草叶片各项解剖结构均对长期放牧干扰作出适当响应以确保自身在受放牧等人为干扰的荒漠草原脆弱生态系统中持续生存。
萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报, 2024, 48(3): 331-340. DOI: 10.17521/cjpe.2023.0018
SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe. Chinese Journal of Plant Ecology, 2024, 48(3): 331-340. DOI: 10.17521/cjpe.2023.0018
组织类型 Tissue type | 生态学含义 Ecological implication | 测量指标 Measurement index |
---|---|---|
保护组织 Protective tissue | 存在于植物体表、由一层或数层细胞构成, 具有防止水分过度蒸腾, 抵抗外界风雨和病虫害侵入等作用的一种组织 A tissue on the surface of a plant consisting of one or more layers of cells that prevents excessive transpiration of water and resists the invasion of wind, rain, pests and diseases | 角质层厚度 Cuticle thickness (μm) |
角质层占中脉区叶片厚度比例 Proportion of cuticle to leaf thickness in midrib area (%) | ||
维管组织 Vascular tissue | 由木质部和韧皮部组成的输导水分和营养物质, 并有一定支持功能的植物组织 A plant tissue consisting of xylem and phloem that carries water and nutrients and has certain supporting functions | 维管束面积 Vascular bundle area (μm) |
木质部面积 Xylem area (μm) | ||
韧皮部面积 Phloem area (μm) | ||
中脉厚度 Midrib thickness (μm) | ||
导管面积 Vessel area (μm) | ||
泡状细胞厚度 Motor cell thickness (μm) | ||
导管占木质部面积比例 Proportion of xylem area in ducts (%) | ||
主导管占主脉维管束面积比例 Proportion of dominant vessel area in main vascular bundle (%) | ||
木质部占维管束面积比例 Proportion of xylem to vascular bundle area (%) | ||
木质部和韧皮部面积比 Area ratio of xylem to phloem (%) | ||
其他 Others | 植物叶脉的维管束鞘细胞和外围一圈较大型叶肉细胞共同形成的环形结构, 这种典型的光合器官能充分利用环境中较低浓度的CO2进行光合作用 The vascular sheath cells and the larger mesophyll cells in the periphery of the leaf vein form a ring structure. This typical photosynthetic organ can make full use of the low concentration of CO2 in the environment for photosynthesis | 花环结构面积 Kranz structure area (μm) |
表1 无芒隐子草叶片解剖性状测量指标
Table 1 Measurement index of anatomical structure of Cleistogenes songorica leaf
组织类型 Tissue type | 生态学含义 Ecological implication | 测量指标 Measurement index |
---|---|---|
保护组织 Protective tissue | 存在于植物体表、由一层或数层细胞构成, 具有防止水分过度蒸腾, 抵抗外界风雨和病虫害侵入等作用的一种组织 A tissue on the surface of a plant consisting of one or more layers of cells that prevents excessive transpiration of water and resists the invasion of wind, rain, pests and diseases | 角质层厚度 Cuticle thickness (μm) |
角质层占中脉区叶片厚度比例 Proportion of cuticle to leaf thickness in midrib area (%) | ||
维管组织 Vascular tissue | 由木质部和韧皮部组成的输导水分和营养物质, 并有一定支持功能的植物组织 A plant tissue consisting of xylem and phloem that carries water and nutrients and has certain supporting functions | 维管束面积 Vascular bundle area (μm) |
木质部面积 Xylem area (μm) | ||
韧皮部面积 Phloem area (μm) | ||
中脉厚度 Midrib thickness (μm) | ||
导管面积 Vessel area (μm) | ||
泡状细胞厚度 Motor cell thickness (μm) | ||
导管占木质部面积比例 Proportion of xylem area in ducts (%) | ||
主导管占主脉维管束面积比例 Proportion of dominant vessel area in main vascular bundle (%) | ||
木质部占维管束面积比例 Proportion of xylem to vascular bundle area (%) | ||
木质部和韧皮部面积比 Area ratio of xylem to phloem (%) | ||
其他 Others | 植物叶脉的维管束鞘细胞和外围一圈较大型叶肉细胞共同形成的环形结构, 这种典型的光合器官能充分利用环境中较低浓度的CO2进行光合作用 The vascular sheath cells and the larger mesophyll cells in the periphery of the leaf vein form a ring structure. This typical photosynthetic organ can make full use of the low concentration of CO2 in the environment for photosynthesis | 花环结构面积 Kranz structure area (μm) |
图1 无芒隐子草叶片保护组织对不同放牧强度的响应。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧。相同小写字母表示放牧强度间差异不显著(p > 0.05)。
Fig. 1 Response of leaf protection tissue to different grazing intensities of Cleistogenes songorica. CK, control; HG, heavy grazing; LG, lightly grazing; MG, moderately grazing. The same lowercase letter indicate that there is no significant difference between grazing intensity (p > 0.05).
图2 无芒隐子草叶片维管组织对不同放牧强度的响应。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧。不同小写字母表示放牧强度间差异显著(p < 0.05)。
Fig. 2 Response of vascular tissue of Cleistogenes songorica to different grazing intensities. CK, control; HG, heavy grazing; LG, lightly grazing; MG, moderately grazing. Different lowercase letters indicate significant differences in grazing intensity (p < 0.05).
图3 无芒隐子草叶片维管组织面积占比对不同放牧强度的响应。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧。不同小写字母表示放牧强度间差异显著(p < 0.05)。
Fig. 3 Response of area proportion of vascular tissue in leaves of Cleistogenes songorica under different grazing intensities. CK, control; HG, heavy grazing; LG, lightly grazing; MG, moderately grazing. Different lowercase letters indicate significant differences in grazing intensity (p < 0.05).
图4 无芒隐子草叶片花环结构面积对不同放牧强度的响应。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧。不同小写字母表示放牧强度间差异显著(p < 0.05)。
Fig. 4 Response of Kranz structure area to different grazing intensities of Cleistogenes songorica leaf. CK, control; HG, heavy grazing; LG, lightly grazing; MG, moderately grazing. Different lowercase letters indicate significant differences in grazing intensity (p < 0.05).
[1] |
Bachle S, Nippert JB (2022). Climate variability supersedes grazing to determine the anatomy and physiology of a dominant grassland species. Oecologia, 198, 345-355.
DOI PMID |
[2] | Bai WF, Zhang WX, Yu L, Nie DL, Li JH, Xiong Y, Yan JW, Wu SZ (2022). Comparison of leaf morphology and anatomical structures of different Cerasus species. Journal of Central South University of Forestry & Technology, 42(8), 15-26. |
[柏文富, 张文昕, 禹霖, 聂东伶, 李建挥, 熊颖, 严佳文, 吴思政 (2022). 不同樱属植物叶形态与解剖结构的比较. 中南林业科技大学学报, 42(8), 15-26.] | |
[3] | Bai X, Li Y, Su SP, Zhao XX (2013). Response of leaf anatomical characteristics of Nitraria tangutorum Bobr. from different populations to habitats. Acta Botanica Boreali-Occidentalia Sinica, 33, 1986-1993. |
[白潇, 李毅, 苏世平, 赵小仙 (2013). 不同居群唐古特白刺叶片解剖特征对生境的响应研究. 西北植物学报, 33, 1986-1993.] | |
[4] | Burentuya (2007). Anatomical Mechanism Study of Individual Plant Miniaturisation in the Course of Degenerating Succession in Inner Mongolia. Master degree dissertation, Inner Mongolia University, Hohhot. |
[布仁图雅 (2007). 内蒙古典型草原退化演替过程中植物个体小型化解剖学机制研究. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[5] | Cebrat J, Pawłowska H, Skucińska B (1995). Anatomical structure of leaf sectors with different resistance to powdery mildew (Erisiphe cruciferarum Opiz ex. L. Junell) in winter rapeseed chimera. Acta Societatis Botanicorum Poloniae, 64, 113-119. |
[6] | Chen MS, Ke SS (2010). Anatomical structure characteristics of vegetative organs of endangered plant Calycanthus chinensis. Journal of Plant Resources and Environment, 19(3), 37-41. |
[陈模舜, 柯世省 (2010). 濒危植物夏蜡梅营养器官的解剖结构特征. 植物资源与环境学报, 19(3), 37-41.] | |
[7] | Chen QC, Sun YW, Zhang GL (1961). A preliminary study on the morphology and anatomy of the dominants of the vegetations distributing along the middle and low drainage basin of the Shorler River based on the view point of ecology. Journal of Lanzhou University, (3), 61-96. |
[陈庆诚, 孙仰文, 张国樑 (1961). 疏勒河中、下游植物群落优势种生态-形态、解剖特性的初步研究. 兰州大学学报, (3), 61-96.] | |
[8] | Chen YP, Li PY, Sun ZJ, Yang HL (2015). Preliminary study on the effects of grazing on anatomic structure and epidermal micro-morphological characters of Seriphidium transiliense leaves. Journal of Xinjiang Agricultural University, 38, 270-276. |
[陈玉萍, 李培英, 孙宗玖, 杨合龙 (2015). 放牧对伊犁绢蒿叶解剖结构及表皮微形态特征的影响初探. 新疆农业大学学报, 38, 270-276.] | |
[9] | Cunningham SA, Summerhayes B, Westoby M (1999). Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs, 69, 569-588. |
[10] | Ding HJ, Han GD, Wang ZW, Zhao HP, Zhang RY, Zhang XJ (2016). Effect of stocking rate on Stipa breviflora desert steppe soil. Chinese Journal of Eco-Agriculture, 24, 524-531. |
[丁海君, 韩国栋, 王忠武, 赵和平, 张睿洋, 张新杰 (2016). 短花针茅荒漠草原不同载畜率对土壤的影响. 中国生态农业学报, 24, 524-531.] | |
[11] | Dong FY, Wang WJ, Cui PJ, Wang JM, Zhang TH, Li JW (2016). Plasticity response of leaf anatomical characteristics of Populus euphraticain different soil conditions. Acta Botanica Boreali-Occidentalia Sinica, 36, 2047-2057. |
[董芳宇, 王文娟, 崔盼杰, 王健铭, 张天汉, 李景文 (2016). 胡杨叶片解剖特征及其可塑性对土壤条件响应. 西北植物学报, 36, 2047-2057.] | |
[12] | Du L, Su L, Chen PF, Zhang K, Liao GL, Shi TL (1998). The xerorphic and saline morphic structure of leaves and assimilating branches in ten chenopodiacea species in Xinjiang. Acta Phytoecologica Sinica, 22, 164-170. |
[独莉, 宿磊, 陈鹏飞, 张昆, 廖广兰, 史铁林 (1998). 新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究. 植物生态学报, 22, 164-170.] | |
[13] | E E, Wang MJ, Xi JL, Chen HJ, Bai CL, Si R (2014). Changes of leaf anatomy structure of Stipa breviflora under different stocking rates. Journal of Arid Land Resources and Environment, 28(6), 155-159. |
[额尔敦花, 王明玖, 希吉勒, 陈海军, 白春利, 斯日古楞 (2014). 不同载畜率对短花针茅叶片解剖结构的影响. 干旱区资源与环境, 28(6), 155-159.] | |
[14] | Fan ZX, Chen YY, Fu HL (2019). Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu. Plant Science Journal, 37(1), 70-78. |
[范志霞, 陈越悦, 付荷玲 (2019). 成都地区10种园林灌木叶片结构与抗旱性关系研究. 植物科学学报, 37(1), 70-78.] | |
[15] | Gates DM (1968). Transpiration and leaf temperature. Annual Review of Plant Physiology, 19, 211-238. |
[16] | Gaüzère P, Violle C, Iversen LL, Seddon AWR, Blonder B (2020). Equilibrium in plant functional trait responses to warming is stronger under higher climate variability during the Holocene. Global Ecology and Biogeography, 29, 2052-2066. |
[17] | Grebneva NY, Kharitonova NP, Lesiovskaya EE (1997). Anatomical structure of the leaf and root of Stellaria dichotoma L. Rastitel’nye Resursy, 33, 80-85. |
[18] | Guo WW, Zhuo MC, Fang JP, Lu J, Quan H, Ren YH (2020). Anatomical characteristics and environmental adaptability of Rhododendron aganniphum var. schizopeplum leaf in Sejila Mountain, southeastern Tibet. Acta Botanica Boreali-Occidentalia Sinica, 40, 811-818. |
[郭文文, 卓么草, 方江平, 卢杰, 权红, 任毅华 (2020). 藏东南色季拉山薄毛海绵杜鹃叶解剖结构特征与环境适应性. 西北植物学报, 40, 811-818.] | |
[19] | Han GD, Li B, Wei ZJ, Yang J, Lü X, Li H (1999). Plant compensatory growth in the grazing system of Stipa breviflora desert steppe. Acta Agrestia Sinica, 7(1), 1-7. |
[韩国栋, 李博, 卫智军, 杨静, 吕雄, 李宏 (1999). 短花针茅草原放牧系统植物补偿性生长的研究——I. 植物净生长量. 草地学报, 7(1), 1-7.]
DOI |
|
[20] | He H, Monaco TA, Jones TA (2018). Functional trait differences between native bunchgrasses and the invasive grass Bromus tectorum. Frontiers of Agricultural Science and Engineering, 5, 139-147. |
[21] | Hou FJ, Chang SH, Yu YW, Lin HL (2004). A review on trampling by grazed livestock. Acta Ecologica Sinica, 24, 784-789. |
[侯扶江, 常生华, 于应文, 林慧龙 (2004). 放牧家畜的践踏作用研究评述. 生态学报, 24, 784-789.] | |
[22] | Huang JH, Han XG (1995). Biodiversity and ecosystem stability. Chinese Biodiversity, 3, 31-37. |
[黄建辉, 韩兴国 (1995). 生物多样性和生态系统稳定性. 生物多样性, 3, 31-37.] | |
[23] | Huang ZY, Wu H, Hu ZH (1997). The structures of 30 species of psammophytes and their adaptation to the sandy desert environment in Xinjiang. Acta Phytoecologica Sinica, 21, 521-530. |
[黄振英, 吴鸿, 胡正海 (1997). 30种新疆沙生植物的结构及其对沙漠环境的适应. 植物生态学报, 21, 521-530.] | |
[24] | Hussein M, Abo-Leila B, Metwally S, Leithy SZ (2012). Anatomical structure of Jatropha leaves affected by proline and salinity conditions. Journal of Applied Sciences Research, 8, 491-496. |
[25] | Ji RX, Yu X, Chang Y, Shen C, Bai XQ, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Journal of Plant Ecology, 44, 277-286. |
[纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.]
DOI |
|
[26] | Kang S, Niu JM, Zhang Q, Chen LP (2013). Anatomical structure of Stipa breviflora leaves and its relationship with environmental factors. Acta Prataculturae Sinica, 22(1), 77-86. |
[康萨如拉, 牛建明, 张庆, 陈丽萍 (2013). 短花针茅叶片解剖结构及与气候因子的关系. 草业学报, 22(1), 77-86.] | |
[27] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 40(S1), 118-127. |
[李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 40(S1), 118-127.] | |
[28] | Li JW, Han GD, Li ZG, Wang ZW, Kang S, Ren HY, Yu FY (2018). Variation of response in Cleistogenes songorica above-ground part functional traits to long-term grazing in a desert steppe. Pratacultural Science, 35, 1179-1187. |
[李江文, 韩国栋, 李治国, 王忠武, 康萨如拉, 任海燕, 于丰源 (2018). 无芒隐子草地上部分功能性状对长期放牧的变异性响应. 草业科学, 35, 1179-1187.] | |
[29] | Li XB, Huang Q, Mi X, Bai YX, Zhang M, Li X (2018). Grazing every month minimizes size but boosts photosynthesis in Stipa grandis in the steppe of Inner Mongolia, China. Journal of Arid Land, 10, 601-611. |
[30] | Liu B, Peng L, Zheng LP, Ren SY (2013). Drought resistance study of 10 major ornamental shrub in Ningxia. Acta Botanica Boreali-Occidentalia Sinica, 33, 1808-1816. |
[刘滨, 彭励, 郑丽萍, 任树勇 (2013). 宁夏10种观赏灌木叶片解剖结构及其抗旱性综合评价. 西北植物学报, 33, 1808-1816.] | |
[31] | Liu MY, Liu GL, Kang YX, Zhang S, Wu Y, Wang Y (2018). Responses of leaf morphological and anatomical structure to elevation in an alpine plant Meconopsis integrifolia. Chinese Journal of Ecology, 37, 35-42. |
[刘梦颖, 刘光立, 康永祥, 张硕, 吴云, 王玉 (2018). 高山植物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应. 生态学杂志, 37, 35-42.] | |
[32] | Ma HY, Lü XX, Ji YN, Li XW (2020). Leaf anatomical structure and drought resistance of 17 Caragana species. Research of Soil and Water Conservation, 27, 340-346. |
[马红英, 吕小旭, 计雅男, 李小伟 (2020). 17种锦鸡儿属植物叶片解剖结构及抗旱性分析. 水土保持研究, 27, 340-346.] | |
[33] | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33, 2834-2841. |
[潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.] | |
[34] | Ren SF, Lü GH (2020). Comparative study on anatomical structure of different Nitraria sibirica Pall. leaves in different habitats. Chinese Wild Plant Resources, 39(9), 1-5. |
[任尚福, 吕光辉 (2020). 不同生境西伯利亚白刺叶片解剖结构研究. 中国野生植物资源, 39(9), 1-5.] | |
[35] | Shen ST, Zhang SJ, Fan M, Wang Q (2017). Classification of plant functional types based on the nutrition traits: a case study on alpine meadow community in the Zoigê Plateau. Journal of Mountain Science, 14, 2003-2012. |
[36] |
Smith WK (1978). Temperatures of desert plants: another perspective on the adaptability of leaf size. Science, 201, 614-616.
PMID |
[37] | Sun HT, Jiang S, Liu JM, Guo YJ, Shen GS, Gu S (2016). Structure and ecological adaptability of the leaves of three Asteraceae species at different altitudes on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 36, 1559-1570. |
[孙会婷, 江莎, 刘婧敏, 郭亚娇, 沈广爽, 古松 (2016). 青藏高原不同海拔3种菊科植物叶片结构变化及其生态适应性. 生态学报, 36, 1559-1570.] | |
[38] | Wang CY, Liu J, Zhou JW, Xiao HG (2017). Differences in leaf functional traits between exotic and native Compositae plant species. Journal of Central South University, 24, 2468-2474. |
[39] |
Wang F, Cheng XM, Xiao YL, Huang XX (2021). Adaptation of leaf anatomical structure and stoichiometric characteristics of wild ancient tea tree to different altitudes in Qianjiazhai. Chinese Journal of Ecology, 40, 1958-1968.
DOI |
[王菲, 程小毛, 肖云龙, 黄晓霞 (2021). 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志, 40, 1958-1968.] | |
[40] | Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS (2015). Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. Horticulture Research, 2, 15028. DOI: 10.1038/hortres.2015.28. |
[41] | Wang MJ, Ma CS (1994). A study on methods of estimating the carrying capacity of grassland. Grassland of China, 16(5), 19-22. |
[王明玖, 马长升 (1994). 两种方法估算草地载畜量的研究. 中国草地, 16(5), 19-22.] | |
[42] | Wei ZJ, Han GD, Yang J, Lü X (2000). The response of Stipa breviflora community to stocking rate. Grassland of China, (6), 1-5. |
[卫智军, 韩国栋, 杨静, 吕雄 (2000). 短花针茅荒漠草原植物群落特征对不同载畜率水平的响应. 中国草地, (6), 1-5.] | |
[43] |
Wu LJ, Li ZH, Yang MH, Wang PL (2015). Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress. Chinese Journal of Applied Ecology, 26, 3619-3626.
PMID |
[吴丽君, 李志辉, 杨模华, 王佩兰 (2015). 赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应. 应用生态学报, 26, 3619-3626.] | |
[44] | Yin GM, Zhang YJ, Zhao YH, Zhang Y (2014a). Leaf epidermal micromorphology of awnless cleistogenes at different grazing intensities. Acta Agrestia Sinica, 22, 816-821. |
[殷国梅, 张英俊, 赵艳红, 张英 (2014a). 无芒隐子草叶表皮微形态对放牧强度的响应. 草地学报, 22, 816-821.] | |
[45] | Yin GM, Zhao JH, Xue YL, Bao YQ, Tian YJ, Narengaowa, Wang FL (2014b). Effect of grazing pattern on the anatomical structure characteristics of Cleistengenes songorica leaves. Animal Husbandry and Feed Science, 35(9), 28-30. |
[殷国梅, 赵金花, 薛艳林, 包艳秋, 田彦军, 娜仁高娃, 王翻莲 (2014b). 放牧方式对无芒隐子草叶片解剖结构特征的影响. 畜牧与饲料科学, 35(9), 28-30.] | |
[46] | Yu XJ, Wang YR, Zeng YJ, Su D (2004). Effects of temperature and osmotic potential on seed germination of Cleistogenes songorica and Plantago lessingii. Acta Ecologica Sinica, 24, 883-887. |
[鱼小军, 王彦荣, 曾彦军, 苏德 (2004). 温度和水分对无芒隐子草和条叶车前种子萌发的影响. 生态学报, 24, 883-887.] | |
[47] | Yu XZ (2007). The Effect of over Grazing on the Leaf and Stem Structures of 11 Species in the Stepe of Inner Mengolia. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[于向芝 (2007). 过度放牧对内蒙古典型草原11种植物茎叶结构的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[48] | Yu XZ, He X, Zhang T, Wang W (2007). Response of leaf structures of 8 plants to grazing prohibition in degraded grassland of Inner Mongolia. Acta Ecologica Sinica, 27, 1638-1645. |
[于向芝, 贺晓, 张韬, 王炜 (2007). 内蒙古退化草原8种植物叶结构对禁牧的响应. 生态学报, 27, 1638-1645.] | |
[49] | Zhang WX, Wang CG, Yin XF, Wang HC (2018). The response of Cleistogenes songorica leaf anatomical structure to desert grassland deterioration gradient. Ecology and Environmental Sciences, 27, 1809-1817. |
[张文霞, 王春光, 殷晓飞, 王海超 (2018). 无芒隐子草叶片解剖结构对荒漠草原不同退化梯度的响应. 生态环境学报, 27, 1809-1817.]
DOI |
|
[50] | Zhao XY, Wang SP (2009). Responses of the anatomical characteristics of plant leaf to long-term grazing under different stocking rates in Inner Mongolia steppe. Acta Ecologica Sinica, 29, 2906-2918. |
[赵雪艳, 汪诗平 (2009). 不同放牧率对内蒙古典型草原植物叶片解剖结构的影响. 生态学报, 29, 2906-2918.] | |
[51] | Zhong YM, Dong FY, Wang WJ, Wang JM, Li JW, Wu B, Jia XH (2017). Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats. Journal of Beijing Forestry University, 39(10), 53-61. |
[钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红 (2017). 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报, 39(10), 53-61.] |
[1] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[2] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[3] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[4] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[5] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[6] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[7] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[8] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[9] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
[10] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
[11] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[12] | 黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响[J]. 植物生态学报, 2017, 41(3): 325-336. |
[13] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[14] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[15] | 李永强, 李治国, 董智, 王忠武, 屈志强, 韩国栋. 内蒙古荒漠草原放牧强度对风沙通量和沉积物粒径的影响[J]. 植物生态学报, 2016, 40(10): 1003-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19