植物生态学报 ›› 2024, Vol. 48 ›› Issue (3): 341-348.DOI: 10.17521/cjpe.2023.0173
收稿日期:
2023-06-16
接受日期:
2023-09-20
出版日期:
2024-03-20
发布日期:
2024-04-24
通讯作者:
*E-mail: zqreal@163.com
ZHANG Qi1,*(), CHENG Xue-Han2, WANG Shu-Zhi3
Received:
2023-06-16
Accepted:
2023-09-20
Online:
2024-03-20
Published:
2024-04-24
Contact:
*E-mail: zqreal@163.com
摘要:
老龄树不仅记载着气候与环境的变化信息, 同时也见证了社会的变迁历史。了解老龄树的生长变化和干扰历史对准确评估全球变暖背景下老龄树的健康并为其制定合理的保护计划具有现实的意义。该研究利用树木年轮生态学方法分析了北京西山地区油松(Pinus tabuliformis)的干扰历史及其原因。结果发现: 在1820-2021年间, 该地区油松生长释放的高峰期主要是5个, 分别是1820-1830、1869-1881、1909-1918、1947-1959和2004-2010年间。树木生长抑制事件多集中在1831-1837、1855-1868、1882-1891、1920-1930、1960-1970和1980-1986年间。该地区油松生长与气候因素的响应分析以及相关的历史资料显示, 干旱事件及随后的气候条件好转是导致该地区森林生长抑制及释放事件的重要原因。进一步研究发现, 老龄树在1840年前的平均径向生长速率可达到2.70 mm·a-1, 随后出现生长速率逐渐下降的趋势; 1980年以后出现明显生长抑制现象, 年平均径向生长速率下降到0.38 mm·a-1, 下降幅度达85%。1965年后生长速率和气温出现了更强的负相关关系, 生长速率和帕尔默干旱指数(PDSI)出现了显著的正相关关系。以上结果表明, 1980年后北京地区加剧的暖干化趋势对该地区老龄树的生长产生负面影响。该研究结果有助于认识北京地区历史时期森林干扰发生的规律, 对准确评估气候变化背景下老龄树的健康状况具有重要意义。
张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史. 植物生态学报, 2024, 48(3): 341-348. DOI: 10.17521/cjpe.2023.0173
ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing. Chinese Journal of Plant Ecology, 2024, 48(3): 341-348. DOI: 10.17521/cjpe.2023.0173
图1 北京气象站1952-2020年间的气象资料。P, 降水量; PDSI, 帕尔默干旱指数; T, 平均气温。
Fig. 1 Meteorological data of the Beijing meteorological station from 1952 to 2020. P, annual precipitation; PDSI, palmer drought severity index; T, mean air temperature.
样本号 Sample ID | 胸径 DBH (cm) | 树高 Tree height (m) | 冠幅 Crown diameter (m) | 时间区间 Time-span | 年龄 Age |
---|---|---|---|---|---|
YS01 | 83.4 | 15.7 | 16.7 | 1766-2021 | 256 |
YS02 | 68.8 | 13.0 | 14.0 | 1807-2021 | 215 |
YS03 | 70.4 | 13.2 | 13.5 | 1777-2013 | 237 |
YS04 | 36.6 | 7.3 | 7.8 | 1925-2021 | 97 |
YS05 | 64.4 | 12.1 | 11.9 | 1814-2021 | 208 |
YS06 | 58.8 | 10.7 | 10.1 | 1811-2021 | 211 |
YS07 | 59.6 | 11.2 | 10.8 | 1846-2021 | 176 |
YS08 | 65.0 | 12.3 | 12.0 | 1834-2021 | 188 |
YS09 | 66.6 | 12.5 | 13.5 | 1837-2021 | 185 |
YS10 | 62.8 | 11.6 | 12.6 | 1802-2021 | 220 |
YS11 | 61.8 | 10.7 | 11.9 | 1804-2021 | 218 |
YS12 | 57.8 | 9.2 | 9.6 | 1836-2021 | 186 |
YS13 | 63.2 | 12.1 | 10.5 | 1839-2021 | 183 |
表1 北京西山老龄树采样基本信息
Table 1 Basic information of sampled old trees in Xishan Mountain, Beijing
样本号 Sample ID | 胸径 DBH (cm) | 树高 Tree height (m) | 冠幅 Crown diameter (m) | 时间区间 Time-span | 年龄 Age |
---|---|---|---|---|---|
YS01 | 83.4 | 15.7 | 16.7 | 1766-2021 | 256 |
YS02 | 68.8 | 13.0 | 14.0 | 1807-2021 | 215 |
YS03 | 70.4 | 13.2 | 13.5 | 1777-2013 | 237 |
YS04 | 36.6 | 7.3 | 7.8 | 1925-2021 | 97 |
YS05 | 64.4 | 12.1 | 11.9 | 1814-2021 | 208 |
YS06 | 58.8 | 10.7 | 10.1 | 1811-2021 | 211 |
YS07 | 59.6 | 11.2 | 10.8 | 1846-2021 | 176 |
YS08 | 65.0 | 12.3 | 12.0 | 1834-2021 | 188 |
YS09 | 66.6 | 12.5 | 13.5 | 1837-2021 | 185 |
YS10 | 62.8 | 11.6 | 12.6 | 1802-2021 | 220 |
YS11 | 61.8 | 10.7 | 11.9 | 1804-2021 | 218 |
YS12 | 57.8 | 9.2 | 9.6 | 1836-2021 | 186 |
YS13 | 63.2 | 12.1 | 10.5 | 1839-2021 | 183 |
统计特征 Statistical characteristics | 数值 Value |
---|---|
样本量 Number of samples | 13 |
标准差 Standard deviation | 0.41 |
序列间平均相关系数 Series intercorrelation coefficient | 0.68 |
一阶自相关系数 First-order autocorrelation coefficient | 0.41 |
信噪比 Signal-to-noise ratio | 12.88 |
群体表达信号(EPS) >85%起始年 Starting year of expressed population signal > 85% | 1820 |
表2 北京西山老龄树标准年表的统计特征
Table 2 Statistic characteristics of standard tree-ring chronology of sampled old trees in Xishan Mountain, Beijing
统计特征 Statistical characteristics | 数值 Value |
---|---|
样本量 Number of samples | 13 |
标准差 Standard deviation | 0.41 |
序列间平均相关系数 Series intercorrelation coefficient | 0.68 |
一阶自相关系数 First-order autocorrelation coefficient | 0.41 |
信噪比 Signal-to-noise ratio | 12.88 |
群体表达信号(EPS) >85%起始年 Starting year of expressed population signal > 85% | 1820 |
图2 北京西山老龄树树轮宽度、标准化年表和树木生长变化率。灰线表示树木个体, 黑线表示不同个体的均值。
Fig. 2 Tree ring width, tree ring width index and percentage growth change of sampled old trees in Xishan Mountain, Beijing. The grey line represents individual trees and the black line shows the mean of different trees.
图3 北京西山老龄树生长释放和生长抑制树木个数随时间的变化。
Fig. 3 Number of old trees with release and suppression changes over time of sampled old trees in Xishan Mountain, Beijing.
图4 北京西山老龄树标准化年表与区域气候要素相关关系。P, 降水量; PDSI, 帕尔默干旱指数; T, 平均气温。横坐标中字母“p”和“c”分别代表前一年和当年; 虚线和实线表示相关分析的95% (p < 0.05)和99% (p < 0.01)显著性水平线。
Fig. 4 Correlation coefficients between the standard tree-ring chronology of sampled old trees and climatic factors in Xishan Mountain, Beijing. P, precipitation; PDSI, Palmer drought severity index; T, mean air temperature. “p” and “c” before the numbers at the x-axis represent the month of previous year and current year, respectively. Horizontal dashed and solid lines represent Bonferroni-corrected p levels of 0.05 and 0.01.
图5 北京西山老龄树标准化年表与区域气候要素滑动相关关系。滑动相关分析窗口设置为30年。P, 年降水量; PDSI, 帕尔默干旱指数; T, 年平均气温。纵坐标中字母“c”代表当年。
Fig. 5 Moving correlation coefficients between the standard tree-ring chronology and climatic factors of sampled old trees in Xishan Mountain, Beijing. The sliding correlation analysis window is set to 30 years. P, annual precipitation; PDSI, Palmer drought severity index; T, mean annual air temperature. “c” before the numbers at the y-axis represent the month of current year.
[1] | Biondi F, Qeadan F (2008). A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Research, 64, 81-96. |
[2] | Biondi F, Waikul K (2004). DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30, 303-311. |
[3] | Chang YX, Chen ZJ, Zhang XL, Bai XP, Zhao XP, Li JX, Lu X (2017). Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 41, 279-289. |
[常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭 (2017). 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 41, 279-289.]
DOI |
|
[4] | Chen M, Zhang X, Li M, Zhang J, Cao Y (2021). Climate-growth pattern of Pinus tabulaeformis plantations and their resilience to drought events in the Loess Plateau. Forest Ecology and Management, 499, 119642. DOI: 10.1016/j.foreco.2021.119642. |
[5] | Cherubini P, Schweingruber FH, Forster T (1997). Morphology and ecological significance of intra-annual radial cracks in living conifers. Trees, 11, 216-222. |
[6] |
Chiarucci A, Piovesan G (2020). Need for a global map of forest naturalness for a sustainable future. Conservation Biology, 34, 368-372.
DOI PMID |
[7] |
Dudley N, Higgins-Zogib L, Mansourian S (2009). The links between protected areas, faiths, and sacred natural sites. Conservation Biology, 23, 568-577.
DOI PMID |
[8] | Evans MEK, Falk DA, Arizpe A, Swetnam TL, Babst F, Holsinger KE (2017). Fusing tree-ring and forest inventory data to infer influences on tree growth. Ecosphere, 8, e01889. DOI: 10.1002/ecs2.1889. |
[9] | Faison EK (2014). Large old tree declines at broad scales: a more complicated story. Conservation Letters, 7, 70-71. |
[10] | Gao H, Ouyang Z, Chen S, 2013). Role of culturally protected forests in biodiversity conservation in Southeast China. Biodiversity and Conservation, 22, 531-544. |
[11] | Hauru K, Niemi A, Lehvavirta S (2012). Spatial distribution of saplings in heavily worn urban forests: implications for regeneration and management. Urban Forestry & Urban Greening, 11, 279-289. |
[12] | Hu JQ, Xia YG, Mei Y, Wang XQ (2004). Research of the acient and famouse trees in China. Journal of Fujian Forestry Science and Technology, 31, 151-154. |
[胡坚强, 夏有根, 梅艳, 王学勤 (2004). 古树名木研究概述. 福建林业科技, 31, 151-154.] | |
[13] | Li Y, Zhang QB (2017). History of tree growth declines recorded in old trees at two sacred sites in northern China. Frontiers in Plant Science, 8, 1779. DOI: 10.3389/fpls.2017.01779. |
[14] | Li ZS, Chen WL, Wei JS, Maierdang K, Zhang YX, Zhang S, Wang XC (2021). Tree-ring growth responses of Liaodong Oak (Quercus wutaishanica) to climate in the Beijing Dongling Mountain of China. Acta Ecologica Sinica, 41, 27-37. |
[李宗善, 陈维梁, 韦景树, 买尔当·克依木, 张育新, 张霜, 王晓春 (2021). 北京东灵山辽东栎林树木生长对气候要素的响应特征. 生态学报, 41, 27-37.] | |
[15] | Lindenmayer DB (2017). Conserving large old trees as small natural features. Biological Conservation, 211, 51-59. |
[16] | Lindenmayer DB, Laurance WF, Franklin JF (2012). Global decline in large old trees. Science, 338, 1305-1306. |
[17] | Lindenmayer DB, Laurance WF, Franklin JF, Likens GE, Banks SC, Blanchard W, Gibbons P, Ikin K, Blair D, McBurney L, Manning AD, Stein JAR (2014). New policies for old trees: averting a global crisis in a keystone ecological structure. Conservation Letters, 7, 61-69. |
[18] | Liu J, Yang B, Lindenmayer DB (2019). The oldest trees in China and where to find them. Frontiers in Ecology and the Environment, 17, 319-322. |
[19] | Liu Y, Zhang XJ, Song HM, Cai QF, Li Q, Zhao BY, Liu H, Mei RC (2017). Tree-ring-width-based PDSI reconstruction for central Inner Mongolia, China over the past 333 years. Climate Dynamics, 48, 867-879. |
[20] | Nowacki GJ, Abrams MD (1997). Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs, 67, 225-249. |
[21] |
Piovesan G, Biondi F (2021). On tree longevity. New Phytologist, 231, 1318-1337.
DOI PMID |
[22] | Reyer CPO, Rammig A, Brouwers N, Langerwisch F (2015). Forest resilience, tipping points and global change processes. Journal of Ecology, 103, 1-4. |
[23] |
Sikorski P, Szumacher I, Sikorska D, Kozak M, Wierzba M (2013). Effects of visitor pressure on understory vegetation in Warsaw forested parks (Poland). Environmental Monitoring and Assessment, 185, 5823-5836.
DOI PMID |
[24] | Sui XH, Zhang JJ, Wen WR (2011). Study on sap flow in forest of Quercus liaotungensis and Populus davidiana by using the TDP method. Acta Ecologica Sinica, 31, 4791-4798. |
[隋旭红, 张建军, 文万荣 (2011). 晋西黄土区辽东栎、山杨树干液流比较研究. 生态学报, 31, 4791-4798.] | |
[25] | Wang BY, Xiu XT, Lan SR (2016). Monetary valuation of the cultural value of ancient and famous trees. Issues of Forestry Economics, 36, 565-570. |
[王碧云, 修新田, 兰思仁 (2016). 古树名木文化价值货币化评估研究. 林业经济问题, 36, 565-570.] | |
[26] | Wang SW, Zhu JH, Cai JN (2004). Interdecadal variability of temperature and precipitation in China since 1880. Advances in Atmospheric Sciences, 21, 307-313. |
[27] | Wang T, Yu D, Li JF, Ma KP (2003). Advances in research on the relationship between climatic and tree-ring width. Chinese Journal of Plant Ecology, 27, 23-33. |
[王婷, 于丹, 李江风, 马克平 (2003). 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 27, 23-33.]
DOI |
|
[28] | Wang XC, Zhao YF (2011). Growth release determination and interpretation of Korean pine and Koyama spruce in Shengshan National Nature Reserve, Heilongjiang Province, China. Acta Ecologica Sinica, 31, 1230-1239. |
[王晓春, 赵玉芳 (2011). 黑河胜山国家自然保护区红松和红皮云杉生长释放判定及解释. 生态学报, 31, 1230-1239.] | |
[29] | Xiao JY, Zhang WY, Mou YM, Lyu LX (2021). Differences of drought tolerance of the main tree species in Dongling Mountain, Beijing, China as indicated by tree rings. Chinese Journal of Applied Ecology, 32, 3487-3496. |
[肖健宇, 张文艳, 牟玉梅, 吕利新 (2021). 树木年轮揭示的东灵山主要树种间干旱耐受性差异. 应用生态学报, 32, 3487-3496.]
DOI |
|
[30] | Xie M, Cai QF, Liu Y, Zhang HY, Li T, Ye YD (2023). Growth characteristics of Pinus tabuliformis Carr. and its relationship with climate change in the south of Lüliang Mountains in the past century. Journal of Earth Environment, 14, 62-73. |
[谢梅, 蔡秋芳, 刘禹, 张涵玉, 李腾, 叶远达 (2023). 过去百年吕梁山南端油松生长特征及其与气候变化的关系. 地球环境学报, 14, 62-73.] | |
[31] | Xue XF, Gao YK (2014). Appreciating the beauty and history of the ancient trees—Discussion on the sustainable utilization of the landscape of ancient trees of Fragrant Hills Park in Beijing. Chinese Landscape Architecture, 30(6), 79-84. |
[薛晓飞, 高云昆 (2014). 赏古树芳华享历史浓荫——论北京香山公园古树景观可持续利用. 中国园林, 30(6), 79-84.] | |
[32] | Yang SY, Meng D, Li XJ, Wu XL (2018). Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001-2014. Acta Ecologica Sinica, 38, 1028-1039. |
[杨思遥, 孟丹, 李小娟, 吴新玲 (2018). 华北地区2001-2014年植被变化对SPEI气象干旱指数多尺度的响应. 生态学报, 38, 1028-1039.] | |
[33] | Zhang Q, Yan M, Liang HX (2017). History of growth suppression and release events in forests in Changzhi Prefecture, Shanxi Province, China. Acta Ecologica Sinica, 37, 3115-3123. |
[张启, 闫明, 梁寒雪 (2017). 山西省长治市过去150年森林的生长抑制和释放历史. 生态学报, 37, 3115-3123.] | |
[34] | Zhang XQ, Lei YC, Pang Y, Liu XZ, Wang JZ (2014). Tree mortality in response to climate change induced drought across Beijing, China. Climatic Change, 124, 179-190. |
[35] | Zhu LJ, Jin GZ, Wang XC (2015). Reconstruction of disturbance history of a typical broad-leaved Pinus koraiensis forest and mechanisms of disturbance occurrence. Chinese Journal of Plant Ecology, 39, 125-139. |
[朱良军, 金光泽, 王晓春 (2015). 典型阔叶红松林干扰历史重建及干扰形成机制. 植物生态学报, 39, 125-139.]
DOI |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[8] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[9] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[10] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[11] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[12] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[13] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[14] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[15] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19