植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 971-983.DOI: 10.17521/cjpe.2022.0068
• 综述 • 下一篇
党宏忠1,*(), 张学利2, 韩辉2, 石长春3, 葛玉祥4, 马全林5, 陈帅1, 刘春颖1
收稿日期:
2022-02-18
接受日期:
2022-05-05
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
党宏忠
作者简介:
党宏忠:ORCID:0000-0003-4428-3834 E-mail: hzdang@caf.ac.cn基金资助:
DANG Hong-Zhong1,*(), ZHANG Xue-Li2, HAN Hui2, SHI Chang-Chun3, GE Yu-Xiang4, MA Quan-Lin5, CHEN Shuai1, LIU Chun-Ying1
Received:
2022-02-18
Accepted:
2022-05-05
Online:
2022-09-20
Published:
2022-10-19
Contact:
DANG Hong-Zhong
Supported by:
摘要:
中国有着世界上最大面积的人工林, 如何维持人工林的可持续性已成为气候变化背景下需要面对的重大挑战。樟子松(Pinus sylvestris var. mongolica)以其抗旱、抗寒、耐贫瘠等优良特性成为中国北方生态治理中最主要的常绿针叶树种之一, 近70年来发挥了巨大的防风固沙与生态固碳功能。然而, 随着林分的生长与气候变化, 樟子松人工固沙林正经历着越来越严峻的环境胁迫, 部分地区出现了林分“早衰”或死亡的现象, 引起了人们对樟子松固沙林适应与应对气候变化能力的担忧。该文在回溯樟子松基本生物学特征与引种推广历史, 系统总结近年来樟子松林林水关系研究新成果的基础上, 全面分析了樟子松固沙林林水关系存在的主要矛盾, 并提出了基于林水关系相协调的林分经营措施的调整: 由倡导防护功能为主的单一目标向包含林分稳定性、生态固碳功能、可持续发展等多目标平衡方向调整; 由以沙地森林景观培育为主向以良好土壤生境培育为主的方向调整; 由倡导天然更新为主向以人工造林与天然更新相结合的世代更新方向调整。在立足于北方沙地脆弱生境与气候变化客观现实的基础背景下, 应坚持樟子松在固沙林生态系统演化过程中的先锋种与建群种地位, 基于“以水定绿”原则, 采取“隔行带伐+再造林”等方式开展林分密度动态调控, 促进林分向异龄林结构演化, 促进樟子松固沙林生态服务的优质化和生态固碳功能的最大化。
党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导. 植物生态学报, 2022, 46(9): 971-983. DOI: 10.17521/cjpe.2022.0068
DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices. Chinese Journal of Plant Ecology, 2022, 46(9): 971-983. DOI: 10.17521/cjpe.2022.0068
图1 多目标平衡下樟子松防风固沙林经营动态调控框架示意图。I为天然樟子松林生长过程, 示意更晚的成熟期、更久的成熟期维持阶段和更高的防护与固碳功能。II为人工樟子松固沙林生长过程, 示意早期更高的生长速率、更早的成熟期、更短的成熟期维持阶段和更早的过熟衰退阶段。III为在多目标平衡原则下人工干预后樟子松固沙林的生长过程。人工干预包括从生长初期开始的林分密度动态调控和间伐迹地再造林。人工干预的及时跟进保障了林分在进入成熟期后系统整体的防护功能得到增强(林水关系协调, 冠层结构发育良好, 简称“升能”。图中字母a示意“升能”阶段开始时刻), 系统维持旺盛的生产力, 固碳能力不减(异龄复层结构, 简称“增碳”。图中字母b示意“增碳”阶段开始时刻)。
Fig. 1 Diagrammatic illustrations of the framework for dynamical regulations of management for Pinus sylvestris var. mongolica windbreak and sanddune-fixing forest according to the balance for multi-objectives. Stage I is the growth process of natural P. sylvestris var. mongolica stands, illustrating a delayed maturity, a longer maturity maintenance period, and a higher protection and carbon sequestration function. Stage II is the growth process of the P. sylvestris var. mongolica plantations in sandy land, illustrating a higher growth rate in the early phase, an advanced maturity, a shorter period of maturity maintenance and the accelerated overmature decline. Stage III indicate the growth process after intervention according to the principle of balance for multi-objectives. The interventions include dynamic regulation of stand density from the beginning of growth to reforestation after thinning. The timely follow-up of manual intervention ensures that the protection function of the system is enhanced after the stands enter the mature stage through harmonious forest-water relationships and well-developed canopy structure (the letter “a” in the figure indicates the beginning time of the ecological function enhancement stage). At the same time, the ecosystem maintains strong productivity and enhances carbon sequestration through an uneven aged forest stand structure (the letter “b” in the figure indicates the commencement time of the carbon sequestration increment stage).
图2 樟子松固沙林生长演化阶段框架图。在第I阶段以防风固沙、保护土壤为主要经营目标, 以营建林带为主要手段。第II阶段以土壤生境改良为主要经营目标, 以营建完善的防护林体系为主要手段。第III阶段以培育稳定的生态系统为主要经营目标, 以促进形成生物多样性为主要措施。各个阶段中需要维护樟子松的建群种地位, 最大限度地发挥樟子松固沙林生态服务功能与生产潜力, 为促进生态系统生物多样性与稳定性创造庇护条件与提供保障。
Fig. 2 Diagrammatic framework of growth and evolution stages of Pinus sylvestris var. mongolica plantations for wind-breaking and sanddune-fixation. In the first stage, the goal is to break wind, fix sand dunes and protect soil by establishing sheltbelts. In the second stage, the goal is to improve soil habitat by establishing shelterbelt systems. The third stage aims at facilitating a stable ecosystem by promoting the formation of biodiversity. In each stage, it is necessary to maintain the status of P. sylvestris var. mongolica as a constructive species to maximize the its advantages in ecological services and productivity, and to create shelter conditions and provide guarantee for promoting ecosystem biodiversity and stability.
[1] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[2] | Bai XF, Han H, Zhou FY, Yang SJ, Liu BC, Lei ZY, Jin Z (2008). Analysis on dynamic change of relative water content and needle water conservation of Pinus sylvestris var. mongolica on sandy land. Protection Forest Science and Technology, (3), 51-53. |
[白雪峰, 韩辉, 周凤艳, 杨树军, 刘伯超, 雷泽勇, 金震 (2008). 沙地樟子松针叶保水力及相对含水量动态变化分析. 防护林科技, (3), 51-53.] | |
[3] |
Bao G (2015). Mongolian pines (Pinus sylvestris var. mongolica) in the Hulun Buir steppe, China, respond to climate in adjustment to the local water supply. International Journal of Biometeorology, 59, 1-10.
DOI URL |
[4] |
Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
DOI PMID |
[5] |
Chang CC, Turner BL (2019). Ecological succession in a changing world. Journal of Ecology, 107, 503-509.
DOI |
[6] |
Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.
DOI PMID |
[7] | Chen LH, Li FX, Di XM, Zhang JX (1998). Eolian Sandy Soil in China. Science Press, Beijing. |
[陈隆亨, 李福兴, 邸醒民, 张继贤 (1998). 中国风砂土. 科学出版社, 北京.] | |
[8] |
Cook BI, Mankin JS, Anchukaitis KJ (2018). Climate change and drought: from past to future. Current Climate Change Reports, 4, 164-179.
DOI URL |
[9] |
Dang HZ, Han H, Chen S, Li MY (2021). A fragile soil moisture environment exacerbates the climate change- related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: long- term observations. Agricultural Water Management, 251, 106857. DOI: 10.1016/j.agwat.2021.106857.
DOI |
[10] |
Dang HZ, Lu P, Yang WB, Han H, Zhang J (2019a). Drought- induced reductions and limited recovery in the radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.): a five-year observation. Forests, 10, 1143. DOI: 10.3390/f10121143.
DOI |
[11] |
Dang HZ, Zhang LZ, Yang WB, Feng JC, Han H, Chen YB (2019b). Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China. Journal of Arid Land, 11, 880-891.
DOI URL |
[12] | Fan XY, Liao CY, Xie Y, Gao BS (2008). Investigation and analysis on the growth of Pinus sylvestris var. momgolica in southeast Mu Us desert areas. Journal of Northwest Forestry University, 23(4), 112-116. |
[樊晓英, 廖超英, 谢燕, 高宝山 (2008). 毛乌素沙地东南部樟子松生长状况调查分析. 西北林学院学报, 23(4), 112-116.] | |
[13] | Fang J, Wei YF, Liu S, Zhao XY, Li SG (2011). Stable isotopic analysis on water utilization sources of Pinus sylvestris var. mongolica plantations in inter-dune lowland in Horqin Sandy Land. Chinese Journal of Ecology, 30, 1894-1900. |
[方杰, 魏雅芬, 刘帅, 赵学勇, 李胜功 (2011). 科尔沁沙地丘间低地樟子松人工林水分利用来源的稳定同位素解析. 生态学杂志, 30, 1894-1900.] | |
[14] |
García-Valdés R, Estrada A, Early R, Lehsten V, Morin X (2020). Climate change impacts on long-term forest productivity might be driven by species turnover rather than by changes in tree growth. Global Ecology and Biogeography, 29, 1360-1372.
DOI URL |
[15] |
Giuggiola A, Kuster T, Saha S (2010). Drought-induced mortality of Scots pines at the southern limits of its distribution in Europe: causes and consequences. iForest- Biogeosciences and Forestry, 3, 95-97.
DOI URL |
[16] | Han H, Bai XF, Xu GJ, Zhang BX, You GC, Shang SC (2012). Study on water balance of Pinus sylvestris var. mongolica planted forest in Zhanggutai area. Liaoning Forestry Science and Technology, (6), 8-11. |
[韩辉, 白雪峰, 徐贵军, 张柏习, 尤国春, 商胜才 (2012). 章古台地区樟子松人工林水量平衡初步研究. 辽宁林业科技, (6), 8-11.] | |
[17] | Han H, Zhang XL, Dang HZ, Xu GJ, Zhang BX, You GC (2015). Study on proper stand density of Pinus sylvestris var. mongolica plantation in sandy land based on stem sap flow velocity. Forest Research, 28, 797-803. |
[韩辉, 张学利, 党宏忠, 徐贵军, 张柏习, 尤国春 (2015). 基于树干液流通量的沙地樟子松合理林分密度的确定. 林业科学研究, 28, 797-803.] | |
[18] |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
PMID |
[19] |
Jean-Francois B, Yelena F, Claude G, Danilo M, Marcelo R, Devin R, Constantin MZ, Thomas WC (2019). The global tree restoration potential. Science, 365, 76-79.
DOI URL |
[20] | Jia WW, Li FR, Dong LH, Zhao X (2012). Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models. Journal of Beijing Forestry University, 34(1), 6-13. |
[贾炜玮, 李凤日, 董利虎, 赵鑫 (2012). 基于相容性生物量模型的樟子松林碳密度与碳储量研究. 北京林业大学学报, 34(1), 6-13.] | |
[21] | Jiang DM, Liu ZM, Cao CY, Kou ZW, Wang RY (2003). Desertification and Ecological Restoration of Horqin Sandy Land. China Environmental Science Press, Beijing. 515. |
[蒋德明, 刘志民, 曹成有, 寇振武, 王汝槦 (2003). 科尔沁沙地荒漠化过程与生态恢复. 中国环境科学出版社, 北京. 515.] | |
[22] | Jiang FQ, Cao CY, Zeng DH (2002).Degradation and Restoration of Ecosystems in Horqin Sand Land. China Forestry Publishing House, Beijing. 282. |
[姜凤岐, 曹成有, 曾德慧 (2002). 科尔沁沙地生态系统退化与恢复.中国林业出版社, 北京. 282.] | |
[23] | Jiang FQ, Yu ZY, Zeng DH, Zhu JJ (2009). Effects of climate change on the Three-north Shelter Forest Program and corresponding strategies. Chinese Journal of Ecology, 28, 1702-1705. |
[姜凤岐, 于占源, 曾德慧, 朱教君 (2009). 气候变化对三北防护林的影响与应对策略. 生态学杂志, 28, 1702-1705.] | |
[24] | Jiang FQ, Zeng DH, Fan ZP, Zhu JJ (1996). Simulation of individual tree growth of Mongolian pine forest in sandy land. Chinese Journal of Applied Ecology, 7, 1-5. |
[姜凤岐, 曾德慧, 范志平, 朱教君 (1996). 沙地樟子松林草木生长的研究. 应用生态学报, 7, 1-5.] | |
[25] | Jiang FQ, Zeng DH, Yu ZY (2006). Decline of protective forest and its prevention strategies from viewpoint of restoration ecology: taking Pinus sylvestris var. mongolica plantation in Zhanggutai as an example. Chinese Journal of Applied Ecology, 17, 2229-2235. |
[姜凤岐, 曾德慧, 于占源 (2006). 从恢复生态学视角透析防护林衰退及其防治对策: 以章古台地区樟子松林为例. 应用生态学报, 17, 2229-2235.] | |
[26] | Jiao SR (1986). The influence of aridity on the growth of Mongolian pine plantation in Zhanggutai sandy land, Liaoning Province. Scientia Silvae Sinicae, 22, 419-425. |
[焦树仁 (1986). 干旱对章古台沙地樟子松人工林生长的影响. 林业科学, 22, 419-425.] | |
[27] | Jiao SR (1987). Analysis of ecological benefit of windbreak and sand-fixation forest. Liaoning Forestry Science and Technology, (4), 46-51. |
[焦树仁 (1987). 防风固沙林的生态效益分析. 辽宁林业科技, (4), 46-51.] | |
[28] | Jiao SR (2001). Causes and control measures of early decline of Pinus sylvestris var. mongolica sand-fixation forest in Zhanggutai, Liaoning Province. Scientia Silvae Sinicae, 37(2), 131-138. |
[焦树仁 (2001). 辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施. 林业科学, 37(2), 131-138.] | |
[29] | Jiao SR (2006). Study on distribution and succession process of the vegetations in sandy land in Zhanggutai, Liaoning Province of China. Protection Forest Science and Technology, (4), 11-13. |
[焦树仁 (2006). 辽宁省章古台沙地植被的分布状况与演替过程的研究. 防护林科技, (4), 11-13.] | |
[30] | Jiao SR (2015). Relationship Between Water Condition and Growth and Stability of Sand Fixation Forest in Horqin Sandy Land. Liaoning University Press, Shenyang. 186. |
[焦树仁 (2015). 科尔沁沙地水分条件与固沙林生长和稳定的关系. 辽宁大学出版社, 沈阳. 186 ] | |
[31] | Jiao SR, Xing ZK, Wu XY (2001). Study on early regeneration of Mongolian pine sand-fixation plantation in Zhanggutai. Journal of Liaoning Forestry Science and Technology, (2), 1-3. |
[焦树仁, 邢兆凯, 吴祥云 (2001). 辽宁省章古台樟子松固沙林更新的研究. 辽宁林业科技, (2), 1-3.] | |
[32] |
Leo M, Oberhuber W, Schuster R, Grams TEE, Matyssek R, Wieser G (2013). Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. European Journal of Forest Research, 133, 691-698.
DOI URL |
[33] | Li CJ, Fu BJ, Wang S, Stringer LC, Wang YP, Li ZD, Liu YX, Zhou WX (2021). Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2, 858-873. |
[34] | Li LL, Li LG, Chen ZJ, Zhou YB, Zhang XL, Bai XP, Chang YX, Xiao JQ (2015). Response of radial growth of Pinus sylvestris var. mongolica plantation to hydrothermal gradient in Liaoning Province. Acta Ecologica Sinica, 35, 4508-4517. |
[李露露, 李丽光, 陈振举, 周永斌, 张先亮, 白学平, 常永兴, 肖建强 (2015). 辽宁省人工林樟子松径向生长对水热梯度变化的响应. 生态学报, 35, 4508-4517.] | |
[35] | Li MM, Ding GD, Gao GL, Zhao YY, Yu MH, Wang DY (2016). Introduction suitability of Pinus sylvestris var. mongholica in 10 northern provinces of China. Journal of Desert Research, 36, 1021-1028. |
[李蒙蒙, 丁国栋, 高广磊, 赵媛媛, 于明含, 王德英 (2016). 樟子松(Pinus sylvestris var. mongholica)在中国北方10省(区)引种的适宜性. 中国沙漠, 36, 1021-1028.] | |
[36] | Li SG (1994). A preliminary study on adaptation of Mongolian Scots pine to sandy land. Journal of Desert Research, 14, 60-67. |
[李胜功 (1994). 樟子松沙地适应性的初步研究. 中国沙漠, 14, 60-67.] | |
[37] |
Li XR, He MZ, Duan ZH, Xiao HL, Jia XH (2007). Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, Northern China. Geomorphology, 88, 254-265.
DOI URL |
[38] | Li YC (2001). Three North Sheltbelt Construction: achievements, experiences, problems, and countermeasures. Forestry Economics, 23(5), 3-7. |
[李育材 (2001). 三北防护林建设: 成就、经验、问题及对策. 林业经济, 23(5), 3-7.] | |
[39] | Liu F, Zhang YX, Ma YB, Dong LL, Yu XC, Huang YR (2015). Growth rhythm of Pinus sylvestris var. mongolica in the Ulan Buh Desert. Journal of Desert Research, 35, 1234-1238. |
[刘芳, 章尧想, 马迎宾, 董礼隆, 余新春, 黄雅茹 (2015). 乌兰布和沙漠绿洲樟子松(Pinus sylvestris var. mongolica)生长规律初探. 中国沙漠, 35, 1234-1238.] | |
[40] | Liu GF, Yang CP, Yang SW, Xia DA, Zhang PG (1990). Adaptative scope of Pinus sylvestris var. mongolica as exotic species. Journal of Northeast Forestry University, 18(S2), 122-128. |
[刘桂丰, 杨传平, 杨书文, 夏德安, 张培杲(1990). 樟子松引种适生范围的研究. 东北林业大学学报, 18(S2), 122-128.] | |
[41] |
Liu Y, Linderholm H, Song HM, Cai QF, Tian QH, Sun JY, Chen DL, Simelton E, Seftigen K, Tian H, Wang RY, Bao G, An Z (2009). Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas, 38, 285-291.
DOI URL |
[42] | Liu YY, Wang AY, An YN, Lian PY, Wu DD, Zhu JJ, Meinzer FC, Hao GY (2018). Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China. Plant, Cell & Environment, 41, 1500-1511. |
[43] |
Llorens P, Poyatos R, Latron J, Delgado J, Oliveras I, Gallart F (2010). A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean Mountain conditions. Hydrological Processes, 24, 3053-3064.
DOI URL |
[44] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[45] | Meng P, Zhang BX, Wang M (2018). Biomass distribution and architecture of roots in Pinus densiflora and Pinus sylvestris var. mongolica in Horqin Sandy Land. Chinese Journal of Ecology, 37, 2935-2941. |
[孟鹏, 张柏习, 王曼(2018). 科尔沁沙地赤松和樟子松根系生物量分配与构型特征. 生态学杂志, 37, 2935-2941.] | |
[46] |
Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015). Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339, 22-33.
DOI URL |
[47] |
Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang LX, Phillips RP (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6, 1023-1027.
DOI URL |
[48] |
Palmroth S, Berninger F, Nikinmaa E, Lloyd J, Pulkkinen P, Hari P (1999). Structural adaptation rather than water conservation was observed in Scots pine over a range of wet to dry climates. Oecologia, 121, 302-309.
DOI PMID |
[49] |
Poyatos R, Llorens P, Gallart F (2005). Transpiration of montane Pinus sylvestris L. and Quercus pubescens Willd. forest stands measured with sap flow sensors in NE Spain. Hydrology and Earth System Sciences, 9, 493-505.
DOI URL |
[50] | Qin DH (2009). Climate change and drought. Science & Technology Review, 27, 3. |
[秦大河(2009). 气候变化与干旱. 科技导报 27, 3. | |
[51] | Song LN, Zhu JJ, Li MC, Yan T, Zhang JX (2012). Needles stable carbon isotope composition and traits of Pinus sylvestris var. mongolica in sparse wood grassland in south edge of Horqin Sandy Land under the conditions of different precipitation. Chinese Journal of Applied Ecology, 23, 1435-1440. |
[宋立宁, 朱教君, 李明财, 闫涛, 张金鑫(2012). 不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征. 应用生态学报, 23, 1435-1440.] | |
[52] | Song LN, Zhu JJ, Li MC, Zhang JX, Zheng X, Wang K (2018). Canopy transpiration of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China. Agricultural and Forest Meteorology, 250-251, 192-201. |
[53] | Song LN, Zhu JJ, Zheng X (2017). Forestation and management scheme of Pinus sylvestris var. mongolica plantations in sandy lands based on their decline mechanisms. Chinese Journal of Ecology, 36, 3249-3256. |
[宋立宁, 朱教君, 郑晓 (2017). 基于沙地樟子松人工林衰退机制的营林方案. 生态学杂志, 36, 3249-3256.] | |
[54] |
Song LN, Zhu JJ, Zheng X, Wang K, Lü LY, Zhang XL, Hao GY (2020). Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agricultural and Forest Meteorology, 281, 107830. DOI: 10.1016/j.agrformet.2019.107830.
DOI |
[55] | Song XD (1988). Introduction of Pinus sylvestris var. mongolica in sandstorm areas in northern China. Liaoning Forestry Science and Technology, (5), 7-10. |
[宋晓东 (1988). “三北”风沙区樟子松引种综述. 辽宁林业科技, (5), 7-10.] | |
[56] | Stocker TF, Qin D, Plattner G, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013). Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, London. |
[57] | Su FL, Liu MG, Guo CJ, Zhang Q (2006). Characteristics of vertical distribution of root system of Mongolian Scotch pine growing in sandy area and influence to the soil. Soil and Water Conservation in China, (1), 20-22. |
[苏芳莉, 刘明国, 郭成久, 张清 (2006). 沙地樟子松根系垂直分布特征及对土壤的影响. 中国水土保持, (1), 20-22.] | |
[58] |
Verbyla D (2008). The greening and browning of Alaska based on 1982-2003 satellite data. Global Ecology and Biogeography, 17, 547-555.
DOI URL |
[59] |
Vincke C, Thiry Y (2008). Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: evidences from continuous evapotranspiration and water table monitoring. Agricultural and Forest Meteorology, 148, 1419-1432.
DOI URL |
[60] | Wang JH, Man DQ, Liu HJ (1999). Adaptability and developing potential of Pinus sylvestris var. mongolica in Gansu arid area. Journal of Desert Research, 19, 390-394. |
[王继和, 满多清, 刘虎俊 (1999). 樟子松在甘肃干旱区的适应性及发展潜力研究. 中国沙漠, 19, 390-394.] | |
[61] | Wang K, Song LN, Lü LY, Zhang L, Qin ZY (2014a). Fine root adaptive strategy of main afforestation tree species in Horqin sandy land. Journal of Arid Land Resources and Environment, 28, 128-131. |
[王凯, 宋立宁, 吕林有, 张亮, 秦峥媛 (2014a). 科尔沁沙地主要造林树种细根适应策略. 干旱区资源与环境, 28, 128-131.] | |
[62] | Wang K, Song LN, Lü LY, Zhu C (2014b). Fine root vertical distribution characters of different aged Pinus sylvestris var. mongolica plantations on sandy land. Journal of Northeast Forestry University, 42(3), 1-4. |
[王凯, 宋立宁, 吕林有, 祝畅 (2014b). 不同林龄沙地樟子松人工林细根垂直分布特征. 东北林业大学学报, 42(3), 1-4.] | |
[63] |
Weber P, Bugmann H, Rigling A (2007). Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. Journal of Vegetation Science, 18, 777-792.
DOI URL |
[64] |
Wei YF, Fang J, Zhao XY, Li SG (2011). Eco-physiological traits of different-age needles of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land of China. Chinese Journal of Plant Ecology, 35, 1271-1280
DOI URL |
[魏雅芬, 方杰, 赵学勇, 李胜功 (2011). 科尔沁沙地樟子松人工林不同年龄针叶生理生态性状. 植物生态学报, 35, 1271-1280.]
DOI |
|
[65] |
Wei YF, Fang J, Zhao XY, Yi M, Zhang RJ, Li SG (2012). Isotopic model estimate of relative contribution of potential water pools to water uptake of Pinus sylvestris var. mongolica in Horqin Sandy Land. Journal of Resources and Ecology, 3, 308-315.
DOI URL |
[66] | Wu XY, Jiang FQ, Li XD, Xue Y, Qiu SF (2004). Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land. Chinese Journal of Applied Ecology, 15, 2225-2228. |
[吴祥云, 姜凤岐, 李晓丹, 薛杨, 邱素芬 (2004). 樟子松人工固沙林衰退的规律和原因. 应用生态学报, 15, 2225-2228.] | |
[67] | Xing ZK, Liu YP (1990). Aerodynamic effects of the Mongolian Scotch pine sand-holding forest. Chinese Journal of Ecology, 9, 31-35. |
[邢兆凯, 刘亚平 (1990). 樟子松固沙林动力效应的研究. 生态学杂志, 9, 31-35.] | |
[68] | Xu HC (1998). Forestry in the Da Hinggan Ling Regions in China. Science Press, Beijing. |
[徐化成 (1998). 中国大兴安岭森林. 科学出版社, 北京.] | |
[69] | Yang LW, Zhou HY, Fan HW, Jia XH, Liu LC, Li AX (2009). Advances of soil restoration research on artificial sand- binding vegetation ecosystem in Shapotou desert region. Journal of Desert Research, 29, 1116-1123. |
[杨丽雯, 周海燕, 樊恒文, 贾晓红, 刘立超, 李爱霞 (2009). 沙坡头人工固沙植被生态系统土壤恢复研究进展. 中国沙漠, 29, 1116-1123.] | |
[70] | Yi XY, Zhao HL, Cui JY, Li YQ, Zuo XA, Zhuo H (2006). Growth of small area Pinus sylvestris var. mongolica artificial forest under different densities in Horqin Sandy Land, North of China. Acta Ecologica Sinica, 26, 1200-1206. |
[移小勇, 赵哈林, 崔建垣, 李玉强, 左小安, 卓鸿(2006). 科尔沁沙地不同密度(小面积)樟子松人工林生长状况. 生态学报, 26, 1200-1206.] | |
[71] |
Zani D, Crowther TW, Mo LD, Renner SS, Zohner CM (2020). Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science, 370, 1066-1071.
DOI URL |
[72] | Zhang JC, Wang J, Li AD, E YH (2000). Research on root distribution and growth adaptability of Pinus sylvestris var. mongolica. Protection Forest Science and Technology, (3), 46-49. |
[张锦春, 汪杰, 李爱德, 俄有浩 (2000). 樟子松根系分布特征及其生长适应性研究. 防护林科技, (3), 46-49.] | |
[73] | Zhang LH, Liu W, Zhang WX, Zhang KP, Zhou JS, Liu MJ (2013). Analysis on the reasons of Pinus sylvestris var. mongolica yellowed and withered in Jilin Province. Journal of Jilin Forestry Science and Technology, 42(6), 30-32. |
[张联合, 刘薇, 张文学, 张凯鹏, 周江山, 刘明江(2013). 吉林省樟子松枯黄与枯死的原因分析. 吉林林业科技, 42(6), 30-32.] | |
[74] |
Zhao HL, Zhou RL, Su YZ, Zhang H, Zhao LY, Drake S (2007). Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecological Engineering, 31, 1-8.
DOI URL |
[75] | Zhao XL, Li WY (1963). Pinus sylvestris var. mongolica. Chinese Agricultural Press, Beijing. |
[赵兴梁, 李万英(1963). 樟子松. 中国农业出版社, 北京.] | |
[76] | Zhao YS, Jiao ZJ, Wang WZ (1991). Transpiration intensity of Mongolian scots pine plantation. Journal of Northeast Forestry University, 19(5), 113-118. |
[赵雨森, 焦振家, 王文章 (1991). 樟子松蒸腾强度的研究. 东北林业大学学报, 19(5), 113-118.] | |
[77] |
Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Takeshi M (2003). Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land. Journal of Forestry Research, 14, 103-111.
DOI URL |
[78] |
Zhu JJ, Kang HZ, Tan H, Xu ML, Wang J (2005). Natural regeneration characteristics of Pinus sylvestris var. mongolica forests on sandy land in Honghuaerji, China. Journal of Forestry Research, 16, 253-259.
DOI URL |
[79] | Zhu JJ, Zeng DH, Kang HZ, Wu XY, Fan ZP (2005). Decline of Pinus sylvestris var. mongolica Plantations in Sandy Land. China Forestry Publishing House, Beijing. 264. |
[朱教君, 曾德慧, 康宏樟, 吴祥云, 范志平 (2005). 沙地樟子松人工林衰退机制. 中国林业出版社, 北京. 264.] | |
[80] | Zhu JJ, Zheng X (2019). Thoughts and prospects on the construction of the Three-North Afforestation Program (TNAP): on the basis of the general assessment results of the TNAP constructed for 40 years. Chinese Journal of Ecology, 38, 1600-1610. |
[朱教君, 郑晓 (2019). 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38, 1600-1610.] | |
[81] | Zhu ZD, Liu S, Di XM (1989). Desertification in China and Its Control. Science Press, Beijing. |
[朱震达, 刘恕, 邸醒民(1989). 中国的沙漠化及其治理. 科学出版社, 北京.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[7] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[8] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[11] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[12] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[13] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[14] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[15] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19