植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 445-458.DOI: 10.17521/cjpe.2023.0218 cstr: 32100.14.cjpe.2023.0218
吴茹茹1,2, 刘美珍1,3,*(), 谷仙4, 常馨月5, 郭立月1, 蒋高明1,3, 祁如意6
收稿日期:
2023-07-28
接受日期:
2023-12-21
出版日期:
2024-04-20
发布日期:
2024-05-11
通讯作者:
* (liumzh@ibcas.ac.cn)
基金资助:
WU Ru-Ru1,2, LIU Mei-Zhen1,3,*(), GU Xian4, CHANG Xin-Yue5, GUO Li-Yue1, JIANG Gao-Ming1,3, QI Ru-Yi6
Received:
2023-07-28
Accepted:
2023-12-21
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (liumzh@ibcas.ac.cn)
Supported by:
摘要:
随着全球气候变化, 植物的生长和生存模式均受到影响。预测气候变化下物种潜在的地理分布范围变化, 是判断该物种如何响应气候变化的重要手段, 有助于制定科学的物种保护策略。巨柏(Cupressus gigantea)是雅鲁藏布江中游末段及主要支流尼洋河近江河段河岸带的特有物种, 也是国家一级重点保护植物, 其分布范围主要在朗县至米林市丹娘乡的雅鲁藏布江两岸及尼洋河河谷的巨柏公园, 生存受到区域自然资源开发和气候变化的明显影响。该研究基于巨柏当前地理分布数据、地形因子、当前及未来气候条件下的环境因子数据, 利用最大熵(MaxEnt)模型、广义线性模型(GLM)和广义相加模型(GAM)与ArcGIS空间分析分别对西藏当前及未来2081-2100年2种气候变化情景(高排放模式SSP5-8.5和低排放模式SSP1-2.6)下的巨柏生境适宜性进行模拟分析。研究结果表明: (1)巨柏的潜在地理分布范围较狭窄, 适生区集中分布在加查县至米林市的雅鲁藏布江两岸和米林市至工布江达县的尼洋河两岸, 在隆子县、贡嘎县、错那县等地呈零星分布; (2)对巨柏潜在地理分布影响较大的环境因子有最冷季平均气温、温度季节性、昼夜温差月均值和海拔, 适宜范围分别为-1.62-2.14 ℃、565.29-603.78、11.66-12.97 ℃和2 898-3 550 m; (3)三种模型模拟结果均表明与潜在地理分布面积相比, 未来气候变化情景下巨柏的总适生区面积呈现扩大的趋势, 且SSP5-8.5情景下巨柏适生区面积的扩增程度明显高于SSP1-2.6气候情景; (4)与当前适生区质心相比, 未来情景下的巨柏适生区质心整体呈向西南偏移的趋势, 巨柏的分布区也呈向藏西南雅鲁藏布江中游方向较高海拔迁移的趋势。该研究探究了巨柏生长的关键影响因子及巨柏对气候的响应状况, 对巨柏保护具有十分重要的科学意义和实践指导价值。
吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测. 植物生态学报, 2024, 48(4): 445-458. DOI: 10.17521/cjpe.2023.0218
WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea. Chinese Journal of Plant Ecology, 2024, 48(4): 445-458. DOI: 10.17521/cjpe.2023.0218
变量类型 Variable type | 变量代码 Variable code | 环境变量描述 Environment variable description | 单位 Unit |
---|---|---|---|
生物气候变量 Bioclimatic variables | Bio1 | 年平均气温 Annual mean temperature | ℃ |
Bio2* | 昼夜温差月均值 Mean of monthly (maximum temperature‒minimum temperature) | ℃ | |
Bio3 | 等温性 Isothermality | /(×100) | |
Bio4* | 温度季节性(标准差×100) Temperature seasonality (standard deviation × 100) | ||
Bio5 | 最暖月最高气温 Max temperature of the warmest month | ℃ | |
Bio6 | 最冷月最低气温 Min temperature of the coldest month | ℃ | |
Bio7 | 年气温变化范围 Temperature annual range (Bio5 - Bio6) | ℃ | |
Bio8 | 最湿季平均气温 Mean temperature of the wettest quarter | ℃ | |
Bio9 | 最干季平均气温 Mean temperature of the driest quarter | ℃ | |
Bio10 | 最热季平均气温 Mean temperature of the warmest quarter | ℃ | |
Bio11* | 最冷季平均气温 Mean temperature of the coldest quarter | ℃ | |
Bio12 | 年降水量 Annual precipitation | mm | |
Bio13 | 最湿月降水量 Precipitation of the wettest month | mm | |
Bio14 | 最干月降水量 Precipitation of the driest month | mm | |
Bio15 | 降水量季节性变异系数 Variation of the precipitation seasonality | % | |
Bio16 | 最湿季度降水量 Precipitation of the wettest quarter | mm | |
Bio17 | 最干季度降水量 Precipitation of the driest quarter | mm | |
Bio18 | 最暖季度降水量 Precipitation of the warmest quarter | mm | |
Bio19 | 最冷季度降水量 Precipitation of the coldest quarte | mm | |
地形因子变量 Terrain factor variables | Al* | 海拔 Altitude | m |
Sl* | 坡度 Slope | ° | |
As* | 坡向 Aspect | ° |
表1 用于预测巨柏在西藏地区潜在地理分布的环境变量
Table 1 Environmental variables used to predict the potential geographic distribution of Cupressus gigantea in Xizang
变量类型 Variable type | 变量代码 Variable code | 环境变量描述 Environment variable description | 单位 Unit |
---|---|---|---|
生物气候变量 Bioclimatic variables | Bio1 | 年平均气温 Annual mean temperature | ℃ |
Bio2* | 昼夜温差月均值 Mean of monthly (maximum temperature‒minimum temperature) | ℃ | |
Bio3 | 等温性 Isothermality | /(×100) | |
Bio4* | 温度季节性(标准差×100) Temperature seasonality (standard deviation × 100) | ||
Bio5 | 最暖月最高气温 Max temperature of the warmest month | ℃ | |
Bio6 | 最冷月最低气温 Min temperature of the coldest month | ℃ | |
Bio7 | 年气温变化范围 Temperature annual range (Bio5 - Bio6) | ℃ | |
Bio8 | 最湿季平均气温 Mean temperature of the wettest quarter | ℃ | |
Bio9 | 最干季平均气温 Mean temperature of the driest quarter | ℃ | |
Bio10 | 最热季平均气温 Mean temperature of the warmest quarter | ℃ | |
Bio11* | 最冷季平均气温 Mean temperature of the coldest quarter | ℃ | |
Bio12 | 年降水量 Annual precipitation | mm | |
Bio13 | 最湿月降水量 Precipitation of the wettest month | mm | |
Bio14 | 最干月降水量 Precipitation of the driest month | mm | |
Bio15 | 降水量季节性变异系数 Variation of the precipitation seasonality | % | |
Bio16 | 最湿季度降水量 Precipitation of the wettest quarter | mm | |
Bio17 | 最干季度降水量 Precipitation of the driest quarter | mm | |
Bio18 | 最暖季度降水量 Precipitation of the warmest quarter | mm | |
Bio19 | 最冷季度降水量 Precipitation of the coldest quarte | mm | |
地形因子变量 Terrain factor variables | Al* | 海拔 Altitude | m |
Sl* | 坡度 Slope | ° | |
As* | 坡向 Aspect | ° |
指标 Indicator | 算法 Algorithm | |
---|---|---|
GLM | GAM | |
AUC | 0.985 | 0.979 |
TSS | 0.976 | 0.952 |
表2 巨柏适宜生境预测中GLM和GAM模型的AUC值与TSS值
Table 2 AUC and TSS values for GLM and GAM model in predicting the potential geographic distribution of Cupressus gigantea
指标 Indicator | 算法 Algorithm | |
---|---|---|
GLM | GAM | |
AUC | 0.985 | 0.979 |
TSS | 0.976 | 0.952 |
图2 巨柏适宜生境预测中不同模型的变量重要性。A, MaxEnt模型。B, GAM和GLM模型。GAM, 广义相加模型; GLM, 广义线性模型; MaxEnt, 最大熵模型。Al, 海拔; As, 坡向; Bio2, 昼夜温差月均值; Bio4, 温度季节性; Bio11, 最冷季平均气温; Sl, 坡度。
Fig. 2 Variable importance of different models in predicting the potential geographic distribution of Cupressus gigantea. A, MaxEnt model. B, GAM and GLM modes. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models. Al, altitude; As, aspect; Bio2, mean of monthly (maximum temperature‒minimum temperature); Bio4, temperature seasonality; Bio11, mean temperature of the coldest quarter; Sl, slope.
图4 巨柏在西藏的潜在地理分布。A-C分别为MaxEnt、GAM、GLM模型当前气候情境下的模拟结果。D-F分别为MaxEnt、GAM、GLM模型SSP1-2.6情境下的模拟结果。G-I分别为MaxEnt、GAM、GLM模型SSP5-8.5情境下的模拟结果。GAM, 广义相加模型; GLM, 广义线性模型; MaxEnt, 最大熵模型; SSP1-2.6, 低排放情景; SSP5-8.5, 高排放情景。
Fig. 4 Potential geographic distribution of Cupressus gigantea in Xizang. A-C are the simulation results under current scenario of MaxEnt, GAM, and GLM models, respectively. D-F are the simulation results under SSP1-2.6 scenario of MaxEnt, GAM, and GLM models, respectively. G-I are the simulation results under SSP5-8.5 scenario of MaxEnt, GAM, and GLM models, respectively. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models; SSP1-2.6, low emission scenario; SSP5-8.5, high emission scenario.
模型 Model | 时期/气候情景 Period/climate scenarios | 适生区面积 Suitable area (× 103 km2) | 扩增面积 Gain area (× 103 km2) | 保留面积 Unchanged area (× 103 km2) | 收缩面积 Loss area (× 103 km2) | 范围变化 Range change (%) | 损失率 Percentage loss (%) | 增益率 Percentage gain (%) | |
---|---|---|---|---|---|---|---|---|---|
总适生区 General suitable area | MaxEnt | 当前 Current | 8.95 | ||||||
2100s/SSP1-2.6 | 10.47 | 3.98 | 6.49 | 2.46 | 16.98 | 27.49 | 44.47 | ||
2100s/SSP5-8.5 | 11.70 | 5.32 | 6.38 | 2.57 | 30.73 | 28.72 | 59.44 | ||
GLM | 当前 Current | 11.12 | |||||||
2100s/SSP1-2.6 | 11.88 | 3.57 | 8.30 | 2.82 | 6.77 | 25.35 | 32.12 | ||
2100s/SSP5-8.5 | 16.74 | 5.98 | 10.76 | 5.61 | 50.47 | 50.44 | 53.78 | ||
GAM | 当前 Current | 14.47 | |||||||
2100s/SSP1-2.6 | 14.48 | 4.34 | 10.14 | 4.33 | 0.05 | 29.92 | 29.96 | ||
2100s/SSP5-8.5 | 17.92 | 5.93 | 10.18 | 4.29 | 23.82 | 29.67 | 40.96 | ||
中高适生区 Medium and highly suitable area | MaxEnt | 当前 Current | 3.10 | ||||||
2100s/SSP1-2.6 | 3.71 | 0.98 | 2.74 | 0.37 | 19.68 | 11.94 | 31.61 | ||
2100s/SSP5-8.5 | 4.39 | 1.89 | 2.50 | 0.60 | 41.61 | 19.35 | 60.97 | ||
GLM | 当前 Current | 4.67 | |||||||
2100s/SSP1-2.6 | 6.56 | 2.49 | 4.07 | 0.59 | 40.62 | 12.74 | 53.36 | ||
2100s/SSP5-8.5 | 7.87 | 3.80 | 4.07 | 0.59 | 68.72 | 12.74 | 81.46 | ||
GAM | 当前 Current | 4.93 | |||||||
2100s/SSP1-2.6 | 6.79 | 2.47 | 4.33 | 0.61 | 37.65 | 12.32 | 49.96 | ||
2100s/SSP5-8.5 | 8.16 | 3.91 | 4.25 | 0.69 | 65.36 | 13.95 | 79.31 |
表3 不同时期不同气候情景下巨柏适生区的变化
Table 3 Changes of distribution area of Cupressus gigantea in different periods and different scenarios
模型 Model | 时期/气候情景 Period/climate scenarios | 适生区面积 Suitable area (× 103 km2) | 扩增面积 Gain area (× 103 km2) | 保留面积 Unchanged area (× 103 km2) | 收缩面积 Loss area (× 103 km2) | 范围变化 Range change (%) | 损失率 Percentage loss (%) | 增益率 Percentage gain (%) | |
---|---|---|---|---|---|---|---|---|---|
总适生区 General suitable area | MaxEnt | 当前 Current | 8.95 | ||||||
2100s/SSP1-2.6 | 10.47 | 3.98 | 6.49 | 2.46 | 16.98 | 27.49 | 44.47 | ||
2100s/SSP5-8.5 | 11.70 | 5.32 | 6.38 | 2.57 | 30.73 | 28.72 | 59.44 | ||
GLM | 当前 Current | 11.12 | |||||||
2100s/SSP1-2.6 | 11.88 | 3.57 | 8.30 | 2.82 | 6.77 | 25.35 | 32.12 | ||
2100s/SSP5-8.5 | 16.74 | 5.98 | 10.76 | 5.61 | 50.47 | 50.44 | 53.78 | ||
GAM | 当前 Current | 14.47 | |||||||
2100s/SSP1-2.6 | 14.48 | 4.34 | 10.14 | 4.33 | 0.05 | 29.92 | 29.96 | ||
2100s/SSP5-8.5 | 17.92 | 5.93 | 10.18 | 4.29 | 23.82 | 29.67 | 40.96 | ||
中高适生区 Medium and highly suitable area | MaxEnt | 当前 Current | 3.10 | ||||||
2100s/SSP1-2.6 | 3.71 | 0.98 | 2.74 | 0.37 | 19.68 | 11.94 | 31.61 | ||
2100s/SSP5-8.5 | 4.39 | 1.89 | 2.50 | 0.60 | 41.61 | 19.35 | 60.97 | ||
GLM | 当前 Current | 4.67 | |||||||
2100s/SSP1-2.6 | 6.56 | 2.49 | 4.07 | 0.59 | 40.62 | 12.74 | 53.36 | ||
2100s/SSP5-8.5 | 7.87 | 3.80 | 4.07 | 0.59 | 68.72 | 12.74 | 81.46 | ||
GAM | 当前 Current | 4.93 | |||||||
2100s/SSP1-2.6 | 6.79 | 2.47 | 4.33 | 0.61 | 37.65 | 12.32 | 49.96 | ||
2100s/SSP5-8.5 | 8.16 | 3.91 | 4.25 | 0.69 | 65.36 | 13.95 | 79.31 |
图5 巨柏当前与其他时期潜在适宜分布区的空间格局变化。A-C, 分别为SSP1-2.6情景下MaxEnt、GAM、GLM模型结果较当前情景下总适生区的空间格局变化。D-F, 分别为SSP5-8.5情境下MaxEnt、GAM、GLM模型结果较当前情景下总适生区的空间格局变化。G-I, 分别为SSP1-2.6情境下MaxEnt、GAM、GLM模型结果较当前情景下中高适生区的空间格局变化。J-L, 分别为SSP5-8.5情境下MaxEnt、GAM、GLM模型结果较当前情景下中高适生区的空间格局变化。GAM, 广义相加模型; GLM, 广义线性模型; MaxEnt, 最大熵模型; SSP1-2.6, 低排放情景; SSP5-8.5, 高排放情景。
Fig. 5 Changes in spatial patterns of potentially suitable distribution areas for Cupressus gigantea. A-C are the changes in spatial patterns of total fitness zones in MaxEnt, GAM, and GLM model results of SSP1-2.6 over the current scenario, respectively. D-F are the changes in spatial patterns of total fitness zones in MaxEnt, GAM, and GLM model results of SSP5-8.5 over the current scenario, respectively. G-I are the changes in spatial patterns of medium and high fitness zones in MaxEnt, GAM, and GLM model results of SSP1-2.6 changes in spatial pattern of medium and high fitness zones over the current scenario. J-L are the changes in spatial patterns of medium and high fitness zones in MaxEnt, GAM, and GLM model results of SSP5-8.5 changes in spatial pattern of medium and high fitness zones over the current scenario. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models; SSP1-2.6, low emission scenario; SSP5-8.5, high emission scenario.
图6 未来气候条件下巨柏的总适生区质心迁移路线。GAM, 广义相加模型; GLM, 广义线性模型; MaxEnt, 最大熵模型; SSP1-2.6, 低排放情景; SSP5-8.5, 高排放情景。
Fig. 6 The center of gravity of Cupressus gigantea general suitable area under future climate conditions. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models; SSP1-2.6, low emission scenario; SSP5-8.5, high emission scenario.
模型 Model | 时期/气候情景 Periods/climate scenarios | 经度 Longitude (° E) | 纬度 Latitude (° N) | 迁移距离 Migration distance (km) |
---|---|---|---|---|
MaxEnt | 当前 Current | 94.88 | 29.62 | |
2100s/SSP1-2.6 | 94.24 | 29.39 | 48.41 | |
2100s/SSP5-8.5 | 94.10 | 29.05 | 82.37 | |
GLM | 当前 Current | 94.25 | 29.74 | |
2100s/SSP1-2.6 | 94.48 | 29.56 | 30.22 | |
2100s/SSP5-8.5 | 92.61 | 29.36 | 164.08 | |
GAM | 当前 Current | 94.05 | 29.34 | |
2100s/SSP1-2.6 | 93.26 | 28.70 | 104.35 | |
2100s/SSP5-8.5 | 92.60 | 28.90 | 149.06 |
表4 不同时期不同气候情景下巨柏质心的变化
Table 4 Changes in the center of mass of Cupressus gigantea in different periods and different scenarios
模型 Model | 时期/气候情景 Periods/climate scenarios | 经度 Longitude (° E) | 纬度 Latitude (° N) | 迁移距离 Migration distance (km) |
---|---|---|---|---|
MaxEnt | 当前 Current | 94.88 | 29.62 | |
2100s/SSP1-2.6 | 94.24 | 29.39 | 48.41 | |
2100s/SSP5-8.5 | 94.10 | 29.05 | 82.37 | |
GLM | 当前 Current | 94.25 | 29.74 | |
2100s/SSP1-2.6 | 94.48 | 29.56 | 30.22 | |
2100s/SSP5-8.5 | 92.61 | 29.36 | 164.08 | |
GAM | 当前 Current | 94.05 | 29.34 | |
2100s/SSP1-2.6 | 93.26 | 28.70 | 104.35 | |
2100s/SSP5-8.5 | 92.60 | 28.90 | 149.06 |
图7 实际调查所得巨柏分布区与当前气候条件下模拟所得高适生区分布。A, MaxEnt模型所得高适生区。B, GAM模型所得高适生区。C, GLM模型所得高适生区。GAM, 广义相加模型; GLM, 广义线性模型; MaxEnt, 最大熵模型。
Fig. 7 Distribution of Cupressus gigantea from actual surveys and simulation of highly suitable area under current climate conditions. A, Highly suitable area from the MaxEnt model. B, Highly suitable area from the GAM model. C, Highly suitable area from the GLM model. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models.
[1] | Braunisch V, Coppes J, Arlettaz R, Suchant R, Zellweger F, Bollmann K (2014). Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity. PLoS ONE, 9, e97718. DOI: 10.1371/journal.pone.0097718. |
[2] | Chakraborty A, Joshi PK, Sachdeva K (2016). Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 97, 593-609. |
[3] | Chang XY, Wan LS, Zhao KT (2021). Determination of seed ripening time of Cupressus gigantea. Journal of Plateau Agriculture, 5, 115-119. |
[常馨月, 万路生, 赵垦田 (2021). 巨柏种子成熟时间的确定. 高原农业, 5, 115-119.] | |
[4] | Chen D (1995). Research status and prospects of Cupressus gigantea in Tibet. Tibet Science and Technology, (2), 7-11. |
[陈端 (1995). 西藏巨柏的研究现状与前景. 西藏科技, (2), 7-11.] | |
[5] | Chen YH, Lü YW, Yin XJ (2019). Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change. Journal of Nanjing Forestry University (Natural Science Edition), 43, 113-120. |
[陈禹衡, 吕一维, 殷晓洁 (2019). 气候变化下西南地区12种常见针叶树种适宜分布区预测. 南京林业大学学报(自然科学版), 43, 113-120.]
DOI |
|
[6] | Cong XF, Chen H, Li D, Zhang YJ, Li WM, Bai GQ (2023). Relationship between plant species diversity and elevation and slope aspect in middle and low altitude mountainous areas of Southern Shaanxi. Ecological Science, 42(4), 39-47. |
[丛晓峰, 陈昊, 李丹, 张宇军, 李为民, 柏国清 (2023). 陕南中低海拔山区植物物种多样性与海拔及坡向的关系. 生态科学, 42(4), 39-47.] | |
[7] | Feng JM (2008). Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodiversity Science, 16, 470-476. |
[冯建孟 (2008). 中国种子植物物种多样性的大尺度分布格局及其气候解释. 生物多样性, 16, 470-476.]
DOI |
|
[8] | Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, et al. (2014). Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 111, 3280-3285. |
[9] | Fu LG (1995). The gospel of China’s rare and endangered plants: a list of national key protected wild plants announced immediately. Journal of Plants, (3), 2-3. |
[傅立国 (1995). 中国珍稀濒危植物的福音——国家重点保护野生植物名录公布在即. 植物杂志, (3), 2-3.] | |
[10] | Guo KQ, Jiang XL, Xu GB (2021). Potential suitable distribution area of Quercus lamellosa and the influence of climate change. Chinese Journal of Ecology, 40, 2563-2574. |
[郭恺琦, 姜小龙, 徐刚标 (2021). 薄片青冈潜在适生区及气候变化对其分布的影响. 生态学杂志, 40, 2563-2574.] | |
[11] | Huang Y, Jacques FMB, Su T, Ferguson DK, Tang H, Chen W, Zhou Z (2015). Distribution of Cenozoic plant relicts in China explained by drought in dry season. Scientific Reports, 5, 14212. DOI: 10.1038/srep14212. |
[12] | Jump AS, Huang T, Chou CH (2012). Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography, 35, 204-210. |
[13] | Kamboj R, Kamboj S, Kamboj S, Kriplani P, Dutt R, Guarve K, Grewal AS, Lal Srivastav A, Gautam SP (2023). Climate uncertainties and biodiversity: an overview//Srivastav AL, Dubey AK, Kumar A, Narang SK, Khan MA. Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence. Elsevier, Amsterdam. 1-14. |
[14] | Koralewski TE, Wang H, Grant WE, Byram TD (2015). Plants on the move: assisted migration of forest trees in the face of climate change. Forest Ecology and Management, 344, 30-37. |
[15] |
Li CY, Cui P, Hao JS, Zhang GT, Wang J, Jia Y (2023). Variation characteristics of temperature and precipitation over the southeast Xizang since 1960. Plateau Meteorology, 42, 344-358.
DOI |
[李朝月, 崔鹏, 郝建盛, 张国涛, 王姣, 贾洋 (2023). 1960年以来藏东南地区气温和降水的变化特征. 高原气象, 42, 344-358.]
DOI |
|
[16] | Li D, Li J, Zhang LL, Deng Y, Zhang YW (2019). Variations in the key hydrological elements of the Yarlung Zangbo River Basin. Water Supply, 19, 1088-1096. |
[17] | Li S, Mo SH, Hu XH, Deng T (2024). Prediction of potential suitable areas of endangered plant Abies ziyuanensis based on MaxEnt and ArcGIS. Chinese Journal of Ecology, 43, 533-541. |
[李莎, 莫舜华, 胡兴华, 邓涛 (2024). 基于MaxEnt和ArcGIS预测濒危植物资源冷杉潜在适生区分析. 生态学杂志, 43, 533-541.] | |
[18] | Li XH, Tian HD, Wang Y, Li RQ, Song ZM, Zhang FC, Xu M, Li DM (2013). Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Regional Environmental Change, 13, 843-852. |
[19] | Li XX, Tao C, Wang QC, Cui GF (2012). Characteristics of geographic distribution of four critically endangered species of Abies in subtropical China and its relationship with climate. Chinese Journal of Plant Ecology, 36, 1154-1164. |
[李晓笑, 陶翠, 王清春, 崔国发 (2012). 中国亚热带地区4种极危冷杉属植物的地理分布特征及其与气候的关系. 植物生态学报, 36, 1154-1164.]
DOI |
|
[20] | Li Y, Zhang XW, Fang YM (2016). Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum. Chinese Journal of Plant Ecology, 40, 1164-1178. |
[李垚, 张兴旺, 方炎明 (2016). 小叶栎分布格局对末次盛冰期以来气候变化的响应. 植物生态学报, 40, 1164-1178.]
DOI |
|
[21] | Li YX, Zhang H, Xu Y (2017). Study on seed germination and seedling growth of Cupressus gigantean in southeast Tibet. Seed, 36(4), 91-93. |
[李永霞, 张豪, 徐杨 (2017). 藏东南巨柏种子发芽及幼苗生长特性研究. 种子, 36(4), 91-93.] | |
[22] | Li ZH, Yang XL, Yang JW, Liu F (2023). Relationship between diameter at breast height (d1.3 < 1 m) and age of Cupressus gigantea. Journal of Plateau Agriculture, 7, 273-277. |
[李智华, 杨小林, 杨雯婧, 刘峰 (2023). 巨柏胸径(d1.3 < 1 m)和树龄的关系研究. 高原农业, 7, 273-277.] | |
[23] |
Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83.
DOI PMID |
[24] |
Liu JP, Zhang WC, Deng C, Nie N (2018). Spatiotemporal variations of snow cover over Yarlung Zangbo River Basin in Tibet from 2000 to 2014 and its response to key climate factors. Journal of Glaciology and Geocryology, 40, 643-654.
DOI |
[刘金平, 张万昌, 邓财, 聂宁 (2018). 2000-2014年西藏雅鲁藏布江流域积雪时空变化分析及对气候的响应研究. 冰川冻土, 40, 643-654.]
DOI |
|
[25] | Liu R, Wang CJ, He J, Zhang ZX (2018). Analysis of geographical distribution of Abies in China under climate change. Bulletin of Botanical Research, 38, 37-46. |
[刘然, 王春晶, 何健, 张志翔 (2018). 气候变化背景下中国冷杉属植物地理分布模拟分析. 植物研究, 38, 37-46.]
DOI |
|
[26] |
Liu WF, Xu ZX, Li FP, Su LQ (2014). Climate change scenarios in the Yarlung Zangbo River Basin based on ASD model. Plateau Meteorology, 33, 26-36.
DOI |
[刘文丰, 徐宗学, 李发鹏, 苏龙强 (2014). 基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景. 高原气象, 33, 26-36.]
DOI |
|
[27] | Liu XT, Yuan Q, Ni J (2019). Research advances in modelling plant species distribution in China. Chinese Journal of Plant Ecology, 43, 273-283. |
[刘晓彤, 袁泉, 倪健 (2019). 中国植物分布模拟研究现状. 植物生态学报, 43, 273-283.]
DOI |
|
[28] | Lu SF, Yin XJ, Wei QW, Zhang C, Ma DX, Liu XL (2020). The geographical distribution response of plant functional types to climate change in southwestern China. Acta Ecologica Sinica, 40, 310-324. |
[陆双飞, 殷晓洁, 韦晴雯, 张超, 马东旭, 刘雪莲 (2020). 气候变化下西南地区植物功能型地理分布响应. 生态学报, 40, 310-324.] | |
[29] | Meng QB, Liu YL, Ju Q, Liu J, Wang GQ, Jin JL, Guan TS, Liu CS, Bao ZX (2021). Vegetation change and its response to climate change in the Yarlung Zangbo River basin in the past 18 years. South-to-North Water Transfers and Water Science & Technology, 19, 539-550. |
[孟庆博, 刘艳丽, 鞠琴, 刘冀, 王国庆, 金君良, 关铁生, 刘翠善, 鲍振鑫 (2021). 雅鲁藏布江流域近18年来植被变化及其对气候变化的响应. 南水北调与水利科技, 19, 539-550.] | |
[30] | Naudiyal N, Wang J, Wu N, Gaire NP, Shi P, Wei Y, He J, Shi N (2021). Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply. Ecological Indicators, 121, 107131. DOI: 10.1016/j.ecolind.2020.107131. |
[31] | Nie N, Zhang WC, Deng C (2012). Spatial and temporal climate variations from 1978 to 2009 and their trend projection over the Yarlung Zangbo River Basin. Journal of Glaciology and Geocryology, 34, 64-71. |
[聂宁, 张万昌, 邓财 (2012). 雅鲁藏布江流域1978-2009年气候时空变化及未来趋势研究. 冰川冻土, 34, 64-71.] | |
[32] | O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122, 387-400. |
[33] | O’Sullivan KSW, Ruiz-Benito P, Chen J, Jump AS (2021). Onward but not always upward: individualistic elevational shifts of tree species in subtropical montane forests. Ecography, 44, 112-123. |
[34] | Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704-1711. |
[35] | Phillips SJ, Dudík M (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. |
[36] | Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, et al. (2017). Threatened species list of China’s higher plants. Biodiversity Science, 25, 696-744. |
[覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 等 (2017). 中国高等植物受威胁物种名录. 生物多样性, 25, 696-744.]
DOI |
|
[37] | Saran S, Joshi RK, Sharma S, Padalia H, Dadhwal VK (2010). Geospatial modeling of Brown oak (Quercus semecarpifolia) habitats in the Kumaun Himalaya under climate change scenario. Journal of the Indian Society of Remote Sensing, 38, 535-547. |
[38] | Tang ZH, Liu XA, Peng PH, Li XY (2023). Prediction of potential geographical distribution patterns of Emmenopterys henryi since the Last Glacial Maximum. Acta Ecologica Sinica, 43, 3339-3347. |
[唐自豪, 刘贤安, 彭培好, 李雪杨 (2023). 末次冰盛期以来香果树潜在地理分布格局变迁. 生态学报, 43, 3339-3347.] | |
[39] | Wang SW, Luo Y, Zhao ZC, Wen XY, Huang JB (2012). New generation of scenarios of greenhouse gas emission. Progressus Inquisitiones DE Mutatione Climatis, 8, 305-307. |
[王绍武, 罗勇, 赵宗慈, 闻新宇, 黄建斌 (2012). 新一代温室气体排放情景. 气候变化研究进展, 8, 305-307.] | |
[40] | Wang SY, Pan SA, Wang MR, Wang MX, Ye J (2019). Assessing the geographic distribution of Acanthopanax senticosus in Northeastern China based on the MaxEnt model. Acta Ecologica Sinica, 39, 3277-3286. |
[王书越, 潘少安, 王明睿, 王明馨, 叶吉 (2019). 基于MaxEnt模型评估刺五加在东北地区的空间分布. 生态学报, 39, 3277-3286.] | |
[41] |
Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007). Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372.
DOI |
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007). ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
DOI |
|
[42] | Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, et al. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782. DOI: 10.1016/j.scitotenv.2020.137782. |
[43] | Woodward FI, Williams BG (1987). Climate and plant distribution at global and local scales. Vegetatio, 69, 189-197. |
[44] | Xu ZL, Peng HH, Peng SZ (2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35, 557-567. |
[许仲林, 彭焕华, 彭守璋 (2015). 物种分布模型的发展及评价方法. 生态学报, 35, 557-567.] | |
[45] | Xu ZX, Gong TL, Zhao FF (2006). Analysis of climate change in Tibetan Plateau over the past 40 years. Journal of Subtropical Resources and Environment, 1(3), 24-32. |
[徐宗学, 巩同梁, 赵芳芳 (2006). 近40年来西藏高原气候变化特征分析. 亚热带资源与环境学报, 1(3), 24-32.] | |
[46] | Yang XL, Li ZH, Zuo YL, Li YX, Zhang L, Lu ZH (2023). The response of tree ring radial growth of Cupressus gigantea to climate change. Journal of Plateau Agriculture, 7, 233-242. |
[杨小林, 李智华, 左有璐, 李永霞, 张璐, 卢自恒 (2023). 巨柏树轮径向生长对气候变化的响应. 高原农业, 7, 233-242.] | |
[47] | Yao Q, Li JY, Zhao KT (2021). Research on ecological suitability of giant cypress on Qinghai-Tibet Plateau based on MaxEnt model. Journal of Plateau Agriculture, 5, 109-114. |
[姚祺, 李佶芸, 赵垦田 (2021). 基于MaxEnt模型的巨柏青藏高原生态适宜性研究. 高原农业, 5, 109-114.] | |
[48] | Yao TD, Yao ZJ (2010). Impacts of glacial retreat on runoff on Tibetan Plateau. Chinese Journal of Nature, 32, 4-8. |
[姚檀栋, 姚治君 (2010). 青藏高原冰川退缩对河水径流的影响. 自然杂志, 32, 4-8.] | |
[49] | Yin JQ, Zhao KT (2019). Research history and prospect of Cupressus gigantean in Tibetan Plateau. Forestry and Environmental Science, 35, 116-122. |
[尹金迁, 赵垦田 (2019). 西藏高原巨柏的研究进展与展望. 林业与环境科学, 35, 116-122.] | |
[50] |
Yong Y (2021). An updated red list assessment of gymnosperms from China (Version 2021). Biodiversity Science, 29, 1599-1606.
DOI |
[杨永 (2021). 中国裸子植物红色名录评估(2021版). 生物多样性, 29, 1599-1606.]
DOI |
|
[51] | Zhang GQ, Luo DQ, Wang JS (2006). Studies on the biological and ecological characteristics of endangered plant Cupressus gigantea in Tibet. Forestry Science & Technology, (2), 1-5. |
[张国强, 罗大庆, 王景升 (2006). 西藏濒危植物巨柏的生物学与生态学特性研究. 林业科技, (2), 1-5.] | |
[52] | Zhang H, Zhao HX, Wang H (2020). Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on MaxEnt model. Acta Ecologica Sinica, 40, 6552-6563. |
[张华, 赵浩翔, 王浩 (2020). 基于MaxEnt模型的未来气候变化情景下胡杨在中国的潜在地理分布. 生态学报, 40, 6552-6563.] | |
[53] | Zhang K, Yao L, Meng J, Tao J (2018). MaxEnt modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326-1334. |
[54] | Zhang L, Liu SR, Sun PS, Wang TL (2011). Comparative evaluation of multiple models of the effects of climate change on the potential distribution of Pinus massoniana. Chinese Journal of Plant Ecology, 35, 1091-1105. |
[张雷, 刘世荣, 孙鹏森, 王同立 (2011). 气候变化对马尾松潜在分布影响预估的多模型比较. 植物生态学报, 35, 1091-1105.]
DOI |
|
[55] | Zhao QD, Ding YJ, Wang J, Gao HK, Zhang SQ, Zhao CC, Xu JL, Han HD, Shangguan DH (2019). Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. Journal of Hydrology, 573, 60-81. |
[56] | Zheng WL, Xue HY, Luo DQ, Wang JS, Luo J (2007). Eco-geographic distribution and coenology characteristics of Cupressus gigantea. Scientia Silvae Sinicae, 43(12), 8-15. |
[郑维列, 薛会英, 罗大庆, 王景升, 罗建 (2007). 巨柏种群的生态地理分布与群落学特征. 林业科学, 43(12), 8-15.] | |
[57] |
Zhu GP, Liu GQ, Bu WJ, Gao YB (2013). Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 21, 90-98.
DOI |
[朱耿平, 刘国卿, 卜文俊, 高玉葆 (2013). 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 21, 90-98.]
DOI |
|
[58] | Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, Luo A, Li Y, Ji C, Peng S, Meng J, Zhou J (2021). Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. The Science of the Total Environment, 783, 146896. DOI: 10.1016/j.scitotenv.2021.146896. |
[1] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[2] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[3] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[6] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19