植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 977-987.DOI: 10.17521/cjpe.2023.0165 cstr: 32100.14.cjpe.2023.0165
张鹏, 焦亮*(), 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩
收稿日期:
2023-06-07
接受日期:
2024-02-07
出版日期:
2024-08-20
发布日期:
2024-03-12
通讯作者:
*焦亮(jiaoliang@nwnu.edu.cn)
基金资助:
ZHANG Peng, JIAO Liang*(), XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian
Received:
2023-06-07
Accepted:
2024-02-07
Online:
2024-08-20
Published:
2024-03-12
Contact:
*JIAO Liang(jiaoliang@nwnu.edu.cn)
Supported by:
摘要:
随着全球气候变化, 干旱的频率和强度不断增加, 导致森林退化和树木生长速率下降甚至死亡。了解干旱对树木径向生长的影响机制, 量化干旱强度对树木径向生长的影响至关重要。该研究利用相关性分析确定祁连山西段3个海拔青海云杉(Picea crassifolia)径向生长的主要气候限制因子, 并基于抵抗力、恢复力、弹性和生长偏离程度比较树木径向生长对不同强度干旱事件的响应差异。结果显示: 1) 3个海拔树木径向生长均对6月平均气温、降水量和标准化降水蒸散发指数响应最强, 尤对后者更为显著, 说明干旱胁迫强烈限制树木径向生长。2) 3个海拔树木径向生长随干湿变化而显著变化; 随着干旱强度增强, 树木应对干旱事件的抵抗力下降, 恢复力上升。3)在中等和极端干旱事件后, 3个海拔树木均表现出补偿性生长, 但这种补偿性生长是短暂的, 在第二年就基本回到干旱前的生长状态; 3个海拔树木在严重干旱事件后第一年没有表现出补偿性生长。因此, 严重干旱事件后第一年的生长动态是预测青海云杉生长恢复的关键。
张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复. 植物生态学报, 2024, 48(8): 977-987. DOI: 10.17521/cjpe.2023.0165
ZHANG Peng, JIAO Liang, XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian. Drought intensity affected the growth recovery of Picea crassifolia across different altitudes in western Qilian Mountains. Chinese Journal of Plant Ecology, 2024, 48(8): 977-987. DOI: 10.17521/cjpe.2023.0165
图1 祁连山西段不同海拔青海云杉采样点和气象站位置以及样地景观。HA, 高海拔; LA, 低海拔; MA, 中海拔。
Fig. 1 Locations of sampling points of Picea crassifolia at different altitudes and weather station and landscape of sample plots in western Qilian Mountains. HA, high altitude; LA, low altitude; MA, medium altitude.
图2 祁连山西段1951-2020年的月平均气温、月降水量、年平均气温、年降水量。
Fig. 2 Monthly mean air temperature, monthly precipitation, annual mean air temperature, and annual precipitation from 1951 to 2020 in western Qilian Mountains.
年表参数 Dendrochronological parameter | 海拔 Altitude (m) | ||
---|---|---|---|
2 650 | 2 869 | 3 070 | |
树/样芯 Number of cores | 25/50 | 25/50 | 25/50 |
时间跨度 Time span | 1947-2020 | 1946-2020 | 1934-2020 |
平均敏感度 Mean sensitivity | 0.330 | 0.212 | 0.179 |
标准差 Standard deviation | 0.293 | 0.233 | 0.243 |
一阶序列自相关 Autocorrelation coefficient | 0.174 | 0.477 | 0.610 |
序列间相关系数 Correlation coefficient (r) | 0.579 | 0.618 | 0.442 |
树内平均相关度 Mean correlation in a tree (r1) | 0.843 | 0.650 | 0.576 |
树间平均相关度 Mean correlation between trees (r2) | 0.594 | 0.607 | 0.438 |
第一个主分量方差 Variance in the first principal component | 0.638 | 0.640 | 0.486 |
信噪比 Signal to noise ratio | 25.221 | 40.514 | 32.510 |
样本的总体信号 Expressing population signal | 0.962 | 0.976 | 0.970 |
表1 祁连山西段不同海拔青海云杉年表统计特征参数
Table 1 Statistical characteristics of chronology of Picea crassifolia across different altitudes in western Qilian Mountains
年表参数 Dendrochronological parameter | 海拔 Altitude (m) | ||
---|---|---|---|
2 650 | 2 869 | 3 070 | |
树/样芯 Number of cores | 25/50 | 25/50 | 25/50 |
时间跨度 Time span | 1947-2020 | 1946-2020 | 1934-2020 |
平均敏感度 Mean sensitivity | 0.330 | 0.212 | 0.179 |
标准差 Standard deviation | 0.293 | 0.233 | 0.243 |
一阶序列自相关 Autocorrelation coefficient | 0.174 | 0.477 | 0.610 |
序列间相关系数 Correlation coefficient (r) | 0.579 | 0.618 | 0.442 |
树内平均相关度 Mean correlation in a tree (r1) | 0.843 | 0.650 | 0.576 |
树间平均相关度 Mean correlation between trees (r2) | 0.594 | 0.607 | 0.438 |
第一个主分量方差 Variance in the first principal component | 0.638 | 0.640 | 0.486 |
信噪比 Signal to noise ratio | 25.221 | 40.514 | 32.510 |
样本的总体信号 Expressing population signal | 0.962 | 0.976 | 0.970 |
SPEI | 分类 Classification |
---|---|
2.00-3.00 | 极端湿润 Extreme wet |
1.50-2.00 | 严重湿润 Severe wet |
1.00-1.50 | 中等湿润 Moderate wet |
0.00-1.00 | 轻度湿润 Mild wet |
-1.00-0.00 | 轻度干旱 Mild drought |
-1.50- -1.00 | 中等干旱 Moderate drought |
-2.00- -1.50 | 严重干旱 Severe drought |
-3.00- -2.00 | 极端干旱 Extreme drought |
表2 根据标准化降水蒸散发指数(SPEI)值的干湿等级分类
Table 2 Classification of dry and wet grades according to standardized precipitation evapotranspiration index (SPEI) values
SPEI | 分类 Classification |
---|---|
2.00-3.00 | 极端湿润 Extreme wet |
1.50-2.00 | 严重湿润 Severe wet |
1.00-1.50 | 中等湿润 Moderate wet |
0.00-1.00 | 轻度湿润 Mild wet |
-1.00-0.00 | 轻度干旱 Mild drought |
-1.50- -1.00 | 中等干旱 Moderate drought |
-2.00- -1.50 | 严重干旱 Severe drought |
-3.00- -2.00 | 极端干旱 Extreme drought |
图3 祁连山西段不同海拔青海云杉径向生长与气候因子的相关系数。HA, 高海拔; LA, 低海拔; MA, 中海拔。 Pre, 降水量; SPEI, 标准化降水蒸散发指数; Tmean, 月平均气温。p表示上一年月份。*, p < 0.05; **, p < 0.01。
Fig. 3 Correlation coefficients between radial growth of Picea crassifolia and climatic factors at different altitudes in western Qilian Mountains. HA, high altitude; LA, low altitude; MA, medium altitude. Pre, precipitation; SPEI, standardized precipitation evapotranspiration index; Tmean, mean monthly air temperature. p denotes the month of the previous year. *, p < 0.05; **, p < 0.01.
图4 祁连山西段不同海拔青海云杉树轮宽度指数随干旱强度的变化趋势(平均值±标准误)。HA, 高海拔; LA, 低海拔; MA, 中海拔。SPEI, 标准化降水蒸散发指数。A-C中的不同小写字母表示干湿状态下树轮宽度具有显著差异(p < 0.05)。D中阴影代表标准误。
Fig. 4 Trends of tree ring width indices with drought intensity in Picea crassifolia at different altitudes in western Qilian Mountains (mean ± SE). HA, high altitude; LA, low altitude; MA, medium altitude. SPEI, standardized precipitation evapotranspiration index. Different lowercase letters in A-C indicate significant differences (p < 0.05) in tree ring width in dry and wet conditions. Shading in D represents SE.
图5 干旱强度对祁连山西段不同海拔青海云杉抵抗力(Rt)、恢复力(Rc)和弹性(Rs)的影响(平均值±标准误)。ED, 极端干旱; MD, 中度干旱; SD, 严重干旱。HA, 高海拔; LA, 低海拔; MA, 中海拔。不同小写字母代表不同干旱强度下干旱指数具有显著差异(p < 0.05)。
Fig. 5 Effects of drought intensity on resistance (Rt), recovery (Rc), resilience (Rs) of Picea crassifolia at different altitudes in western Qilian Mountains (mean ± SE). ED, extreme drought; MD, moderate drought; SD, severe drought. HA, high altitude; LA, low altitude; MA, medium altitude. Different lowercase letters represent significant differences in drought indices under different drought intensities (p < 0.05).
图6 祁连山西段不同海拔青海云杉在干旱期间(0年)和干旱后1-2年的恢复轨迹(平均值±标准误)。ED, 极端干旱; MD, 中度干旱; SD, 严重干旱。HA, 高海拔; LA, 低海拔; MA, 中海拔。不同小写字母代表不同年份生长恢复具有显著差异(p < 0.05)。
Fig. 6 Recovery trajectories of Picea crassifolia at different altitudes in western Qilian Mountains during drought (year 0) and 1-2 years after drought (mean ± SE). ED, extreme drought; MD, moderate drought; SD, severe drought. HA, high altitude; LA, low altitude; MA, medium altitude. Different lowercase letters represent significant differences in growth recovery among years (p < 0.05).
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Ted Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[3] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[4] | Arend M, Sever K, Pflug E, Gessler A, Schaub M (2016). Seasonal photosynthetic response of European beech to severe summer drought: limitation, recovery and post- drought stimulation. Agricultural and Forest Meteorology, 220, 83-89. |
[5] |
Ault TR (2020). On the essentials of drought in a changing climate. Science, 368, 256-260.
DOI PMID |
[6] |
Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Améglio T, Fichot R, Brignolas F, Cochard H (2013). Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals of Botany, 112, 1431-1437.
DOI PMID |
[7] | Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado- Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, Karger DN, et al. (2021). Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 784, 147222. DOI: 10.1016/j.scitotenv.2021.147222. |
[8] |
Bottero A, Forrester DI, Cailleret M, Kohnle U, Gessler A, Michel D, Bose AK, Bauhus J, Bugmann H, Cuntz M, Gillerot L, Hanewinkel M, Lévesque M, Ryder J, Sainte-Marie J, et al. (2021). Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: contrasting responses to mild and severe droughts. Global Change Biology, 27, 4403-4419.
DOI PMID |
[9] | Bréda N, Huc R, Granier A, Dreyer E (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644. |
[10] |
Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 188, 533-542.
DOI PMID |
[11] | Büntgen U, Frank D, Wilson R, Carrer M, Urbinati C, Esper J (2008). Testing for tree-ring divergence in the European Alps. Global Change Biology, 14, 2443-2453. |
[12] | Chen L, Huang J, Stadt KJ, Comeau PG, Zhai L, Dawson A, Alam SA (2017). Drought explains variation in the radial growth of white spruce in western Canada. Agricultural and Forest Meteorology, 233, 133-142. |
[13] | Chen XL, Zhang P, Zhang T, Chen NL, Chen T (2009). Study on antioxidase activities of Picea crassifolia and Juniperus przewalskii at different altitude gradients. Journal of Gansu Agricultural University, 44(1), 118-122. |
[陈晓莉, 张鹏, 张涛, 陈年来, 陈拓 (2009). 不同海拔青海云杉与祁连圆柏叶片抗氧化酶活性的研究. 甘肃农业大学学报, 44(1), 118-122.] | |
[14] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[15] | Cook ER (1985). A Time Series Analysis Approach to Tree Ring Standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process). PhD dissertation, University of Arizona, Tucson, USA. |
[16] | Dittmar C, Zech W, Elling W (2003). Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—A dendroecological study. Forest Ecology and Management, 173, 63-78. |
[17] | Feng Y, Ma KM, Zhang YX, Qi J (2008). DCCA analysis of plant species distributions in different strata of oak (Quercus liaotungensis) forest along an altitudinal gradient in Dongling Mountain, China. Journal of Plant Ecology (Chinese Version), 32, 568-573. |
[冯云, 马克明, 张育新, 祁建 (2008). 辽东栎林不同层植物沿海拔梯度分布的DCCA分析. 植物生态学报, 32, 568-573.]
DOI |
|
[18] | Fritts HC, Shatz DJ (1975). Selecting and characterizing tree-ring chronologies for dendroclimatic analysis. Tree- Ring Bulletin, 35, 31-40. |
[19] | Gao LL, Gou XH, Deng Y, Liu WH, Yang MX, Zhao ZQ (2013). Climate-growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, Northwest China. Trees, 27, 379-388. |
[20] | Gessler A, Bottero A, Marshall J, Arend M (2020). The way back: recovery of trees from drought and its implication for acclimation. New Phytologist, 228, 1704-1709. |
[21] |
Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, Ruthrof KX, Wunder J, Adams HD, Bloemen J, Cailleret M, et al. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 218, 15-28.
DOI PMID |
[22] |
Hevia A, Sánchez-Salguero R, Camarero JJ, Querejeta JI, Sangüesa-Barreda G, Gazol A (2019). Long-term nutrient imbalances linked to drought-triggered forest dieback. Science of the Total Environment, 690, 1254-1267.
DOI |
[23] | Holmes R (1983). Computer-assisted quality control in tree- ring dating and measurement. Tree-Ring Bulletin, 43, 51-67. |
[24] |
Huang M, Wang X, Keenan T, Piao S (2018). Drought timing influences the legacy of tree growth recovery. Global Change Biology, 24, 3546-3559.
DOI PMID |
[25] | Kannenberg SA, Maxwell JT, Pederson N, D’Orangeville L, Ficklin DL, Phillips RP (2019). Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecology Letters, 22, 119-127. |
[26] | Kohler M, Kunz J, Herrmann J, Hartmann P, Jansone L, Puhlmann H, von Wilpert K, Bauhus J (2019). The potential of liming to improve drought tolerance of Norway spruce [Picea abies (L.) Karst.]. Frontiers in Plant Science, 10, 382. DOI: 10.3389/fpls.2019.00382. |
[27] | Li C, Barclay H, Roitberg B, Lalonde R (2021). Ecology and prediction of compensatory growth: from theory to application in forestry. Frontiers in Plant Science, 12, 655417. DOI: 10.3389/fpls.2021.655417. |
[28] | Liang EY, Wang YF, Xu Y, Liu B, Shao XM (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 24, 363-373. |
[29] | Lloret F, Keeling EG, Sala AN (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909-1920. |
[30] | Loehle C (2009). A mathematical analysis of the divergence problem in dendroclimatology. Climatic Change, 94, 233-245. |
[31] | Lv P, Rademacher T, Huang X, Zhang B, Zhang X (2022). Prolonged drought duration, not intensity, reduces growth recovery and prevents compensatory growth of oak trees. Agricultural and Forest Meteorology, 326, 109183. DOI: 10.1016/j.agrformet.2022.109183. |
[32] | Meyer BF, Buras A, Rammig A, Zang C (2020). Higher susceptibility of beech to drought in comparison to oak. Dendrochronologia, 64, 125780. DOI: 10.1016/j.dendro.2020.125780. |
[33] | Mira E, Cochard H, Evette A, Dulormne M (2023). Growth, xylem vulnerability to cavitation and leaf cell response to dehydration in tree seedlings of the Caribbean dry forest. Forests, 14, 697. DOI: 10.3390/f14040697. |
[34] | Ovenden TS, Perks MP, Clarke TK, Mencuccini M, Jump AS (2021). Life after recovery: increased resolution of forest resilience assessment sheds new light on post-drought compensatory growth and recovery dynamics. Journal of Ecology, 109, 3157-3170. |
[35] | Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17, 3228-3239. |
[36] | Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Gerten D, Gosling SN, Grillakis M, Gudmundsson L, Hanasaki N, Kim H, Koutroulis A, Liu J, Papadimitriou L, et al. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11, 226-233. |
[37] | Potop V, Boroneanţ C, Možný M, Štěpánek P, Skalák P (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115, 563-581. |
[38] | Seidel H, Matiu M, Menzel A (2019). Compensatory growth of Scots pine seedlings mitigates impacts of multiple droughts within and across years. Frontiers in Plant Science, 10, 519. DOI: 10.3389/fpls.2019.00519. |
[39] | Serra-Maluquer X, Granda E, Camarero JJ, Vilà-Cabrera A, Jump AS, Sánchez-Salguero, Sangüesa-Barreda G, Imbert JB, Gazol A (2021). Impacts of recurrent dry and wet years alter long-term tree growth trajectories. Journal of Ecology, 109, 1561-1574. |
[40] |
Trugman AT, Detto M, Bartlett MK, Medvigy D, Anderegg WRL, Schwalm C, Schaffer B, Pacala SW (2018). Tree carbon allocation explains forest drought-kill and recovery patterns. Ecology Letters, 21, 1552-1560.
DOI PMID |
[41] | Vicente-Serrano SM, Beguería S, López-Moreno JI (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718. |
[42] | Yang B, He M, Melvin T, Zhao Y, Briffa K (2013). Climate control on tree growth at the upper and lower treelines: a case study in the Qilian Mountains, Tibetan Plateau. PLoS ONE, 8, e69065. DOI: 10.1371/journal.pone.0069065. |
[43] | Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ (2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai, Mountain, Northeast China. Chinese Journal of Plant Ecology, 40, 24-35. |
[于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 (2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 24-35.]
DOI |
|
[44] | Zeng XM, Wei CF, Liu XH, Zhang LN (2020). Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabuliformis) show high vulnerability and similar resilience to early-growing-season drought in the Helan Mountains, China. Ecological Indicators, 110, 105871. DOI: 10.1016/j.ecolind.2019.105871. |
[45] | Zhang X, Fan Z, Shi Z, Pan L, Kwon S, Yang X, Liu Y (2022). Tree characteristics and drought severity modulate the growth resilience of natural Mongolian pine to extreme drought episodes. Science of the Total Environment, 830, 154742. DOI: 10.1016/j.scitotenv.2022.154742. |
[46] | Zhang Z, Chang J, Xu C, Zhou Y, Wu Y, Chen X, Jiang S, Duan Z (2018). The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Science of the Total Environment, 635, 443-451. |
[1] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[2] | 李士杰, 王丽, 杜英军, 郑磊, 曾凡锁, 辛颖. 长白山天然水曲柳径向生长对气候的响应[J]. 植物生态学报, 2024, 48(8): 1011-1020. |
[3] | 董云焘, 贾恒锋, 杨晶, 李佩轩, 方欧娅. 祁连山中部祁连圆柏林干扰历史重建[J]. 植物生态学报, 2024, 48(8): 967-976. |
[4] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[7] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[8] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[11] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[12] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[13] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[14] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[15] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19